

UNISONIC TECHNOLOGIES CO., LTD

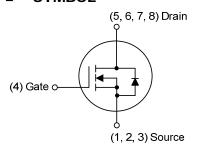
UF3N20 Preliminary Power MOSFET

SOP-8

QW-R205-106.a

3A, 200V N-CHANNEL POWER MOSFET

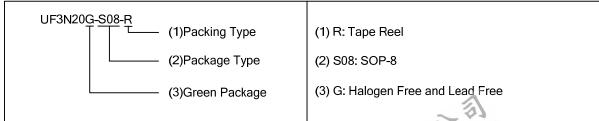
■ DESCRIPTION

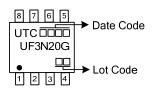

The UTC **UF3N20** is an N-channel mode power MOSFET using UTC's advanced technology to provide customers with planar stripe and DMOS technology. This technology allows a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.

The UTC **UF3N20** is generally applied in high efficiency switch mode power supplies, active power factor correction and electronic lamp ballasts based on half bridge topology.

■ FEATURES

- * $R_{DS(ON)}$ < 200m Ω @ V_{GS} =10V, I_D =1.5A
- * High switching speed
- * 100% avalanche tested


■ SYMBOL


ORDERING INFORMATION

	Ordering Number	Dookogo	Pin Assignment								Dooking	
		Package	1	2	3	4	5	6	7	8	Packing	
	UF3N20G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel	

Note: Pin Assignment: S: Source G: Gate D: Drain

■ MARKING

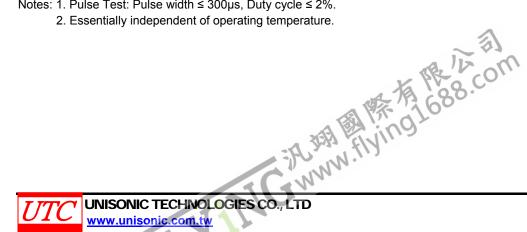
www.unisonic.com.tw 1 of 5

ABSOLUTE MAXIMUM RATINGS

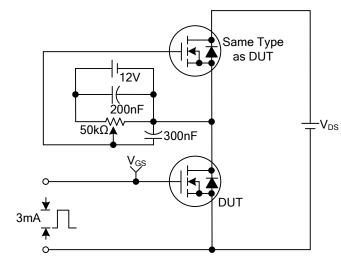
PARAMET	ER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	200	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current	Continuous	I _D	3	Α
Continuous Drain Current	Pulsed	I _{DM} 12		
Avalanche Energy		E _{AS}	52	mJ
Power Dissipation		P_{D}	4.5	mW
Junction Temperature		T_J	+150	°C
Storage Temperature Range	9	T _{STG}	-55~+150	°C

Preliminary

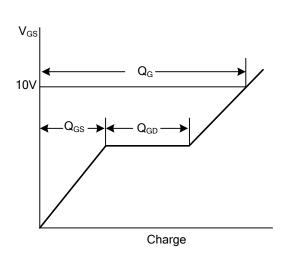
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

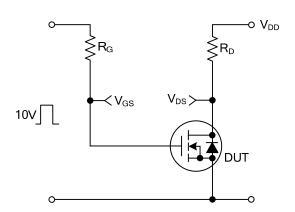

- 2. Repetitive Rating: Pulse width limited by T_J.
- 3. L=55mH, I_{AS} =2.0A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 2.4$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C

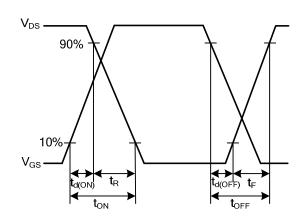
ELECTRICAL CHARACTERISTICS

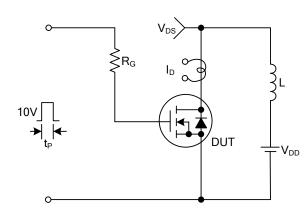

PARAMETER		SYMBOL	TEST CONDITIONS	TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltag	je	BV_{DSS}	$I_D=250\mu A,\ V_{GS}=0V$	200			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =200V			1	μA
Coto Source Leakage Current Forw		1	V_{GS} =+20V, V_{DS} =0V			10	μΑ
Gate-Source Leakage Current	Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-10	μΑ
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	I _D =250μA	1.0		3.0	V
Static Drain-Source On-State Re	esistance	R _{DS(ON)}	V_{GS} =10V, I_D =1.5A			200	mΩ
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			1530		pF
Output Capacitance		Coss	V_{GS} =0V, V_{DS} =25V, f=1MHz		145		pF
Reverse Transfer Capacitance		C_{RSS}			8		pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_G	V _{GS} =10V, V _{DS} =50V, I _D =1.3A		160		nC
Gate to Source Charge		Q_GS	-I _G =100μA (Note 1, 2)		6.0		nC
Gate to Drain Charge	e to Drain Charge		IG-100μΑ (Note 1, 2)		3.2		nC
urn-ON Delay Time		$t_{D(ON)}$			36		ns
Rise Time		t_R	V_{GS} =10V, V_{DD} =30V, R_{G} =25 Ω ,		28		ns
Turn-OFF Delay Time		t _{D(OFF)}	I _D =0.5A (Note 1, 2)		490		ns
Fall-Time		t_{F}			64		ns
SOURCE- DRAIN DIODE RATI	NGS AND (CHARACTERI	STICS				
Maximum Body-Diode Continuo	us Current	Is				3	Α
Maximum Body-Diode Pulsed C	urrent	I _{SM}				12	Α
Drain-Source Diode Forward Vo	ltage	V_{SD}	I _S =3A			1.3	V

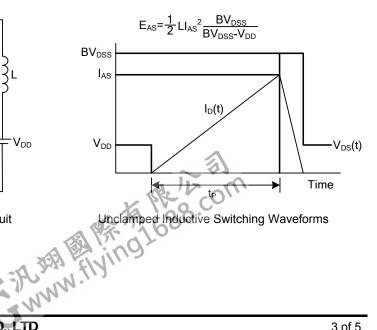
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.

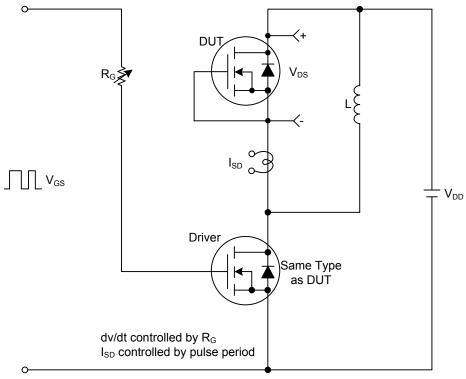

2. Essentially independent of operating temperature.

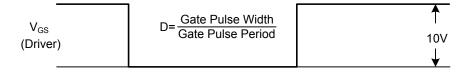

TEST CIRCUITS AND WAVEFORMS

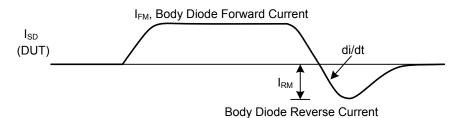

Gate Charge Test Circuit

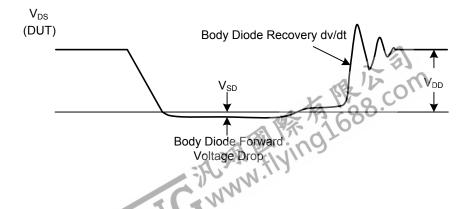

Gate Charge Waveforms


Resistive Switching Test Circuit


Resistive Switching Waveforms


Unclamped Inductive Switching Test Circuit




■ TEST CIRCUITS AND WAVEFORMS(Cont.)

Peak Diode Recovery dv/dt Test Circuit & Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

