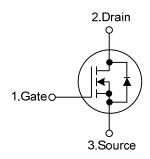


UNISONIC TECHNOLOGIES CO., LTD

UF50N20 Preliminary Power MOSFET

50A, 200V N-CHANNEL POWER MOSFET

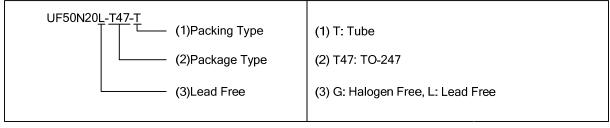
■ DESCRIPTION

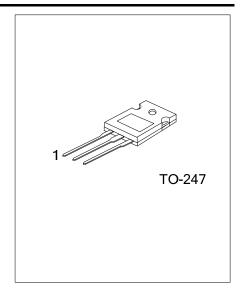

The UTC **UF50N20** is an N-channel power MOSFET using UTC's advanced technology to provide the customers with perfect $R_{DS(ON)}$, high switching speed, high current capacity and low gate charge.

The UTC **UF50N20** is suitable for motor control, AC-DC or DC-DC converters and audio amplifiers, etc.

■ FEATURES

- * $R_{DS(ON)}$ <40m Ω @ V_{GS} =10V, I_{D} =50A
- * High Switching Speed
- * High Current Capacity
- * Low Gate Charge(typical 130nC)


■ SYMBOL



ORDERING INFORMATION

Ordering Number		Dookooo	Pin Assignment			Daaldaa	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UF50N20L-T47-T	UF50N20G-T47-T	TO-247	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

<u>www.unisonic.com.tw</u> 1 of 3

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage (V _{GS} =0)		V_{DSS}	200	V
Gate-Source Voltage		V_{GSS}	±20	V
Drain Current	Continuous	ID	50	Α
Drain Current	Pulsed (Note 1)	I_{DM}	200	Α
Avalanche Current		I_{AR}	60	Α
Avalanche Energy		E _{AS}	600	mJ
Power Dissipation		P_{D}	125	W
Junction Temperature		TJ	150	°C
Storage Temperature		T_{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Pulse width limited by safe operating area

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	1	°C/W	

ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS		O T THE OL	120.00110110	1		1 1111 01	5.111
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V				V
Drain-Source Leakage Current			I _D =250μA, V _{GS} =0V V _{DS} =200V, V _{GS} =0V			1	μA
-	Forward	I _{DSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current	Reverse	I_{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS (Note	2)						
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$		3	4	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =30A			40	mΩ
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			3900		pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		950		pF
Reverse Transfer Capacitance		C _{RSS}			250		pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_G			130	170	nC
Gate to Source Charge Gate to Drain Charge		Q_GS	V _{GS} =10V, V _{DD} =100V, I _D =50A		26		nC
		Q_GD			55		nC
Turn-ON Delay Time		t _{D(ON)}	V_{DD} =30V, I_{D} =25A, R_{G} =4.7 Ω ,		30		ns
Rise Time		t _R		180		ns	
Fall-Time		t⊧	V _{GS} =10V		35		ns
Off-Voltage Rise Time		t _{R(OFF)}			135		ns
SOURCE- DRAIN DIODE RAT	INGS AND	CHARACTER	RISTICS				
Maximum Body-Diode Continuous Current		Is	(Note 1)			50	Α
Maximum Body-Diode Pulsed Current		I _{SM}				200	Α
Drain-Source Diode Forward Vo	oltage	V_{SD}	I _{SD} =50A, V _{GS} =0V (Note 2)	1		1.6	V
Notes: 1. Pulse width limited by 2. Pulsed: Pulse duration	y safe opera on=300µs, D	ting area uty cycle 1.5	V _{GS} =10V RISTICS (Note 1) I _{SD} =50A, V _{GS} =0V (Note 2))(I.,			
UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw						QW-R	2 of 3

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

