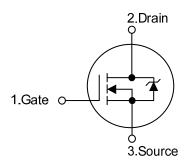
UNISONIC TECHNOLOGIES CO., LTD

UF840-F **Power MOSFET**

8.0A, 500V, 0.85Ω, **N-CHANNEL POWER MOSFET**

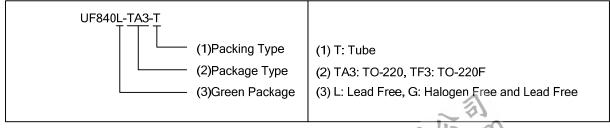

DESCRIPTION

The N-Channel enhancement mode silicon gate power MOSFET is designed for high voltage, high speed power switching applications such as switching regulators, switching converters, solenoid, motor drivers, relay drivers.

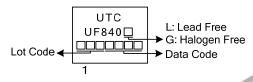
FEATURES

- * Low $R_{DS(ON)}$ < 0.87 Ω @ V_{GS} =10V. I_D = 4.4A
- * Single Pulse Avalanche Energy Rated
- * Fast Switching Speeds
- * Linear Transfer Characteristics
- * High Input Impedance

SYMBOL



TO-220 TO-220F


ORDERING INFORMATION

Ordering Number		Daakaga	Pin Assignment			Dacking	
Lead Free	Halogen Free	- Package	1	2	3	Packing	
UF840L-TA3-T	UF840G-TA3-T	TO-220	G	D	S	Tube	
UF840L-TF3-T	UF840G-TF3-T	TO-220F	G	D	S	Tube	

Note: Pin Assignment: A: Anode K: Cathode

MARKING

www.unisonic.com.tw 1 of 6 UF840-F **Power MOSFET**

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless Otherwise Specified)

			•	
PARAMETER		SYMBOL	RATINGS	UNIT
Drain to Source Voltage		$V_{ extsf{DSS}}$	500	V
Drain to Gate Voltage		V_{DGR}	500	V
Gate to Source Voltage		V_{GSS}	±30	V
Drain Current (Note 2)	Continuous	I_{D}	8.0	Α
Drain Current (Note 2)	Pulsed	I_{DM}	32	Α
Avalanche Current (Note 2)		I_{AR}	9.4	Α
Single Pulse Avalanche Energy (Note 3)		E _{AS}	442	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	3.6	V/ns
Device Dissipation	TO-220	P_D	134	W
Power Dissipation	TO-220F		44	W
unction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

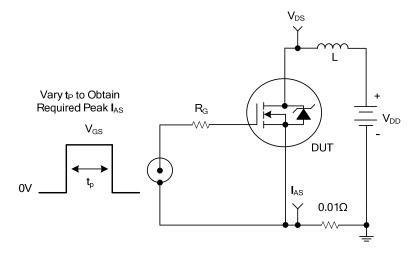
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 10mH, I_{AS} = 9.4A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C.
- 4. $I_{SD} \le 8A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C.

THERMAL RESISTANCES CHARACTERISTICS

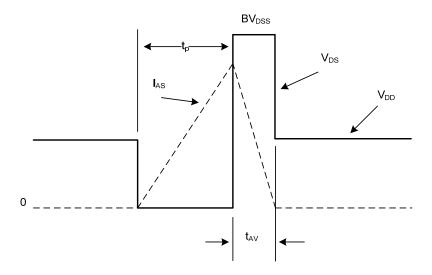
PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient		θ_{JA}	62.5	°C/W
lunction to Coop	TO-220	0	0.93	°C/W
Junction to Case	TO-220F	θ_{JC}	2.84	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)

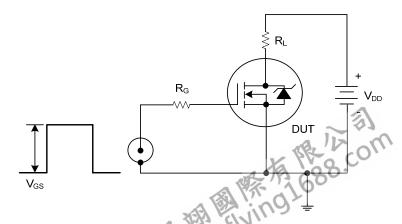
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV_{DSS}	V_{GS} =0V, I_D =250 μ A	500			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =600V, V _{GS} =0V			25	μΑ
Gate-Source Leakage Current	Forward	- I _{GSS}	V_{GS} =30V, V_{DS} =0V			100	nA
	Reverse		V_{GS} =-30V, V_{DS} =0V			-100	IIA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =4.4A			0.87	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		C_{ISS}			1480		pF
Output Capacitance		Coss	V_{GS} =0V, V_{DS} =25V, f=1.0MHz		193		pF
Reverse Transfer Capacitance		C_{RSS}			81		pF
SWITCHING CHARACTERISTIC	S	_					-
Total Gate Charge		Q_{G}	V _{DS} =50V, I _D =1.3A, V _{GS} =10V I _G =100μA (Note 1, 2)		120		nC
Gate-Source Charge		Q_GS			7.0		nC
Gate-Drain Charge		Q_GD	IG-100μΑ (Note 1, 2)		29		nC
Turn-On Delay Time		$t_{D(ON)}$			54		ns
Turn-On Rise Time		t_R	V_{DD} =30V, V_{GS} =10V, I_{D} =0.5A,		382		ns
Turn-Off Delay Time		$t_{D(OFF)}$	R _G =25Ω (Note 1, 2)		165		ns
Turn-Off Fall Time		t_{F}			210		ns
DRAIN-SOURCE DIODE CHARA	CTERISTIC	CS AND MAXII	MUM RATINGS				
Maximum Continuous Drain-Source Diode		Is				5	Α
Forward Current						3	^
Maximum Pulsed Drain-Source Diode		I _{SM}				20	Α
Forward Current						20	^
Drain-Source Diode Forward Voltage		V_{SD}	I _S =5.0A, V _{GS} =0V			1.4	V
Reverse Recovery Time (Note 1)		t _{rr}	I _S =5.0A, V _{GS} =0V,		320		nS
Reverse Recovery Charge		Q_{rr}	dI _F /dt=100A/μs		3.55		μC


Note: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.

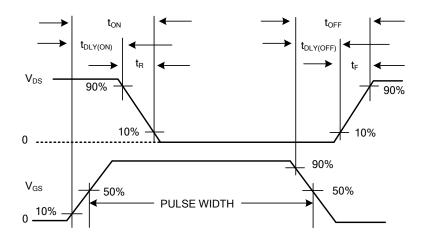
2. Essentially independent of operating temperature.

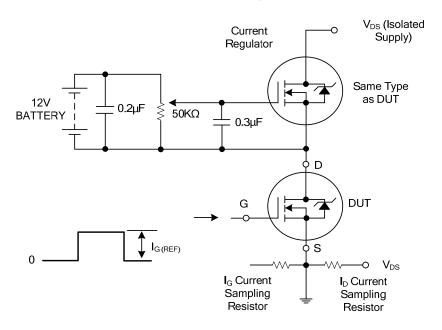


Power MOSFET

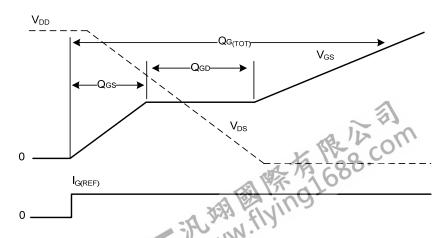

■ TEST CIRCUITS AND WAVEFORMS

Unclamped Energy Test Circuit


Unclamped Energy Waveforms


Switching Time Test Circuit

UF840-F


■ TEST CIRCUITS AND WAVEFORMS (Cont.)

Resistive Switching Waveforms

Gate Charge Test Circuit

Gate Charge Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

