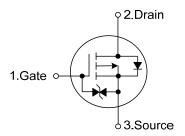


UF9640Z

-11A, -200V P-CHANNEL POWER MOSFET

DESCRIPTION


The **UF9640Z** is a P-channel Power MOSFET that developed by UTC's advanced technlogy. The device has an advantage of including fast switching, low on-resistance, ruggedized device design and low cost-effectiveness.

This type of package is generally applied in applications in the commercial-industrial field especially suitable for the power consumption at approximately 50W. Because of its low package cost and low thermal resistance, this package is widely applied in the industry field.

FEATURES

- * Fast switching speed
- * Repetitive avalanche rated
- * Simple drive requirements
- * Ease of paralleling

SYMBOL

TO-220F

Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_c=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Gate to Source Voltage		V _{GSS}	±20	V
Drain Current	Continuous	I _D	-11	А
	Pulsed (Note 1)	I _{DM}	-22	А
Avalanche Energy	Single Pulsed (Note 2)	E _{AS}	35	mJ
	Repetitive (Note 1)	E _{AR}	13	mJ
Peak Diode Recovery dv/dt (Note 3)		dv/dt	1.2	V/ns
Power Dissipation		PD	38	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

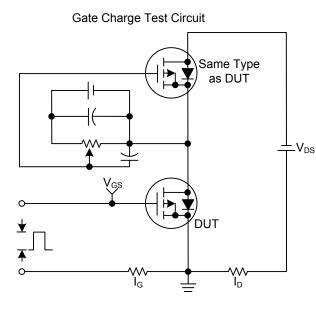
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=12mH, I_{AS}=-2.4A, V_{DD}=-50V, R_G=25 Ω , Starting T_J = 25°C.
- 4. $I_{SD} \leq -11A$, di/dt $\leq 200A/\mu$ s, $V_{DD} \leq BV_{DSS}$, Starting $T_J=25^{\circ}C$.

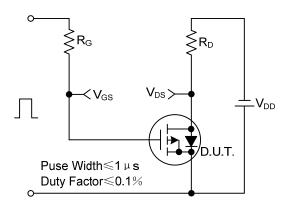
THERMAL DATA

PARAMETER	SYMBOL	PATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ _{JC}	3.31	°C/W	

ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

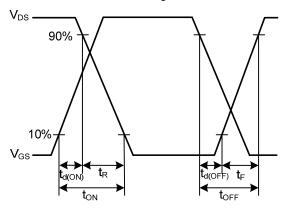

				-		-	-
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		V _{(BR)DSS}	V _{GS} =0V, I _D =-250µA	-200			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =-200V, V _{GS} =0V			-10	μA
Gate-Source Leakage Current	Forward	- I _{GSS}	V _{GS} =+20V			10	μA
	Reverse		V _{GS} =-20V			-10	μA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =-250µA	-2.0		-4.0	V
Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =-10V, I _D =-6.6A (Note 2)			0.5	Ω
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			770		pF
Output Capacitance		Coss	V _{DS} =-25V,V _{GS} =0V,f=1.0MHz		185		pF
Reverse Transfer Capacitance		C _{RSS}			20		pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_{G}	V _{DS} =-50V, V _{GS} =-10V, I _D =-1.3A, I _G =-100mA (Note 2)		7.0		nC
Gate-Source Charge		Q_{GS}			6.8		nC
Gate-Drain Charge		Q_{GD}	I_{D} = 1.3A, I_{G} = 100IIIA (Note 2)		8.4		nC
Turn-ON Delay Time		t _{D(ON)}			11		ns
Turn-ON Rise Time		t _R	V_{DD} =-50V, V_{GS} =-10 Ω , I_{D} =-5A,		19		ns
Turn-OFF Delay Time		t _{D(OFF)}	R _G =25Ω (Note 2)		58		ns
Turn-OFF Fall Time		t _F			25		ns
SOURCE- DRAIN DIODE RATI	NGS AND C	CHARACTERI	STICS				
Maximum Body-Diode Continuous Current		Is	A 112	2		-11	Α
Maximum Body-Diode Pulsed Current		I _{SM}	SPL CO) ()		-22	Α
Drain-Source Diode Forward Voltage		V _{SD}	I _S =-11A, V _{GS} =0V, T _J =25°C			-5.0	V
Body Diode Reverse Recovery Time		t _{rr}	I _F =-11A, T _J =25°C		260		ns
Body Diode Reverse Recovery Charge		Qrr	dl/dt=100A/µs (Note 2)		1.6		μC
Notes: 1 Pulse width limited by	maximum ii	inction temper:	ature				

Notes: 1. Pulse width limited by maximum junction temperature

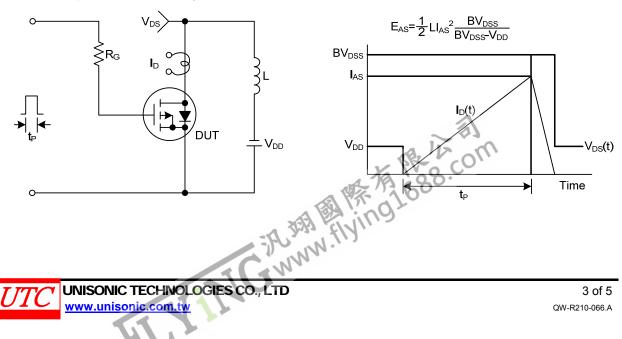

2. Pulse Test : Pulse width≤300µs, Duty cycle≤2%

TEST CIRCUITS AND WAVEFORMS

Resistive Switching Test Circuit

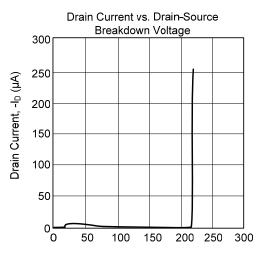


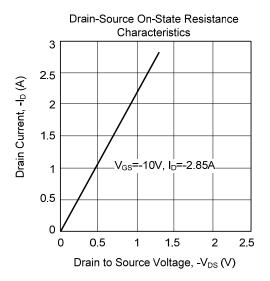
Unclamped Inductive Switching Test Circuit


V_{GS} Q_G Q_G Q_G Q_G Charge

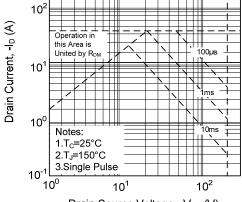
Gate Charge Waveforms

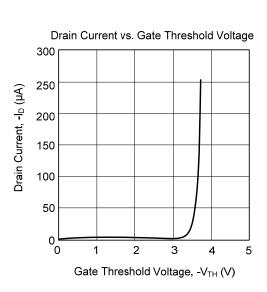
Resistive Switching Waveforms

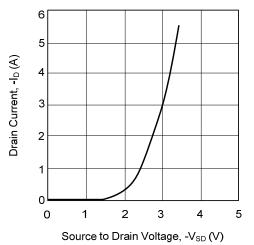

Unclamped Inductive Switching Waveforms


UF9640Z

Power MOSFET


TYPICAL CHARACTERISTICS


Drain-Source Breakdown Voltage, -BV_{DSS}(V)



Drain Current vs. Source to Drain Voltage

UNISONIC TECHNOLOGIES CO., LTD

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

