

UTC UNISONIC TECHNOLOGIES CO., LTD

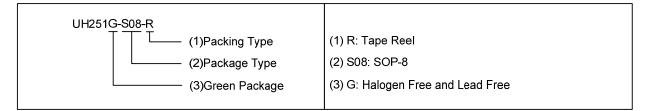
UH251

Preliminary

CMOS IC

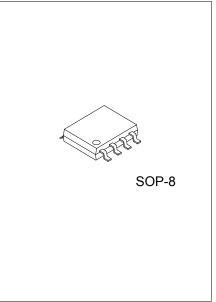
LOW-SATURATION, **LOW-VOLTAGE 1.5 CHANNEL BI-DIRECTIONAL MOTOR** DRIVER

DESCRIPTION

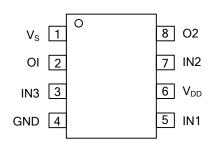

The device is a 1.5-channel low-saturation bi-directional motor driver IC. The design is optimal for motor applications, such as cameras, printers, FDDs, or other portable devices with forward, reverse, brake and stand-by function.

FEATURES

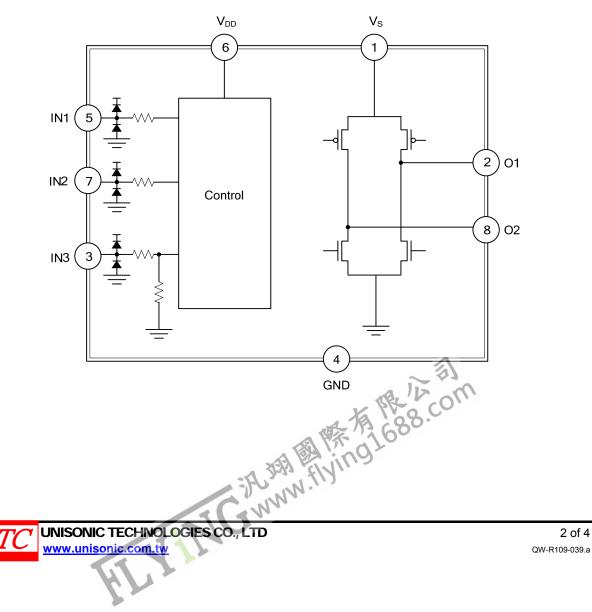
- * Low voltage operation (V_{DDMIN}=V_{SMIN}=1.5V)
- * Low saturation voltage (Upper transistor + low transistor residual voltage; 0.4V typ. at 300mA, V_{DD}=V_S=3V)
- * Low input current
- * Brake function
- * High output sinking and driving capability


ORDERING INFORMATION

Ordering Number	Package	Packing
UH251G-S08-R	SOP-8	Tape Reel


MARKING

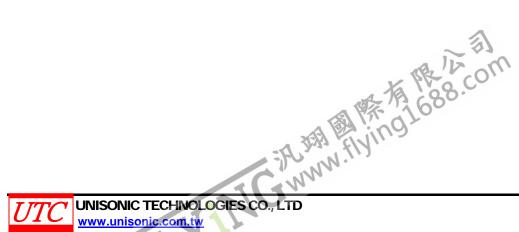
2 of 4


PIN CONFIGURATION

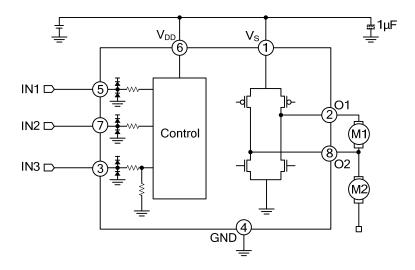
PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	Vs	Power supply pin for output driver		
2	01	Output sinking/driving pin		
3	IN3	Input pin 3 that determines driving mode		
4	GND	Ground pin		
5	IN1	Input pin 1 that determines driving mode		
6	V _{DD}	Power supply pin for controller.		
7	IN2	Input pin 2 that determines driving mode		
8	O2	Output sinking/driving pin		

BLOCK DIAGRAM


■ ABSOLUTE MAXIMUM RATING (T_A= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{DD}	5.5	V
	Vs	5.5	V
Input Voltage	V _{IN}	V _{DD} +0.4	V
I _o Peak Current	I _{OPEAK}	2	A
I _{ODC} Current	I _{ODC}	0.75	A
Power Dissipation	PD	680	mW
Operating Temperature Range	T _{OPR}	-40 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C


Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (V_{DD}=V_S=3V, T_A= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Supply Voltage	V _{DD}		1.5	3	5.5	V		
	Vs		1.5	3	5.5	V		
Supply Current (I _{DD} +I _S)	I _{DD0}	V _{IN1, IN2, IN3} =0V		0.5	10	μA		
	I _{DD1}	V _{IN1, IN2, IN3} =3V		1	10	μA		
IN1/IN2/IN3 Input Terminal (IN1/IN2/IN3 Input Terminal (TJ=25°C)							
Input Voltage "H"	VIH		$0.8 \times V_{DD}$		V _{DD} +0.4	V		
Input Voltage "L"	V _{IL}		-0.4		$0.2 \times V_{DD}$	V		
Input Current "H"	I _{IH}	V _{IN} =V _{DD}			±5	μA		
Input Current "L"	IIL	V _{IN} =0V			±5	μA		
O1/O2 Output Terminal (TJ=2	25°C)							
Output Voltage (Upper+Lower)	V _{OUT1}	I _{OUT} =200mA		0.3	0.45	V		
	V _{OUT2}	I _{OUT} =300mA		0.5	0.7	V		
	V _{OUT3}	I _{оυт} =600mА		0.9	1.0	V		
Output Sustaining Voltage	V _{O (SUS)}	I _{OUT} =400mA			Vs	V		

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

