HIGH ACCURACY LINEAR CONSTANT CURRENT LED DRIVER

- DESCRIPTION

The UL23EA is a linear constant current IC that supports the adjust brightness or color temperature in 3 grades. The application scheme is simple and the cost is low.

In the dimming application of UL23EA, user can change the size of the output current by turn on/off the power switch, that adjust brightness of LED lights. Changing the REXT external resistance adjustment of brightness ratio.

In the adjust color temperature application of UL23EA, user can change the state of the two output ports by turn on/off the power switch, that adjust the color temperature through the light of two different colored LED lights. Changing the REXT external resistance can adjustment the output power.

FEATURES

* Input voltage 220VAC, 110VAC
* Adjustable output current, max 60 mA
* Inter-chip current deviation $< \pm 4 \%$
* Application system no EMI problems
* Over temperature Reduced Current
* Supports the adjust brightness in 3 grades
* Supports the adjust color temperature in 3 grades
* In no stroboscopic apply:

Power factor > 0.5

* No transformer and high voltage electrolysis capacitor:

Power factor > 0.9

* Effectively switching time from 0.3S ~3S

■ ORDERING INFORMATION

Ordering Number		Package	Packing
Lead Free	Halogen Free		
UL23EAL-SH2-R	UL23EAG-SH2-R	HSOP-8	Then

- MARKING

- PIN CONFIGURATION

- PIN DESCRIPTION

PIN NO.	PIN NAME	
1	V $_{\text {DD }}$	Analog circuit power port
2	V $_{\text {CC }}$	Digital circuit power port
3	REXT1	Output Current Setting Pin 1.
4	REXT2	Output Current Setting Pin 2.
5	OUT2	Constant flow output port 2
6	OUT1	Constant flow output port 1
7	NC	No connect
8	VIN	Power input port
9	GND	Ground

- ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
OUT Pin Voltage	$\mathrm{V}_{\text {OUT1 }} / \mathrm{V}_{\text {OUT2 }}$	$-0.5 \sim 500$	V
OUT Pin Current	$\mathrm{I}_{\text {OUT }}$	$5 \sim 60$	mA
$\mathrm{~V}_{\text {IN }}$ Pin Voltage	$\mathrm{V}_{\text {IN }}$	$-0.5 \sim 500$	V
REXT Pin Voltage	$\mathrm{V}_{\text {REXT1 }} / \mathrm{V}_{\text {REXT2 }}$	$-0.5 \sim 8$	V
$\mathrm{~V}_{\text {DD }}$ Pin Voltage	$\mathrm{V}_{\text {VDD }}$	$-0.5 \sim 8$	V
$\mathrm{~V}_{\text {CC }}$ Pin Voltage	$\mathrm{V}_{\text {VCC }}$	$-0.5 \sim 8$	V
Working temperature	$\mathrm{T}_{\text {OPR }}$	$-40 \sim+150$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {STQ }}$	$-50 \sim+150$	${ }^{\circ} \mathrm{C}$

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power of IC Pin Voltage	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {cC }}$			6.8		V
OUT Pin Voltage	$\mathrm{V}_{\text {OUT1 }} / \mathrm{V}_{\text {OUT2 }}$	lout $=30 \mathrm{~mA}$	1			V
OUT Pin Withstanding Voltage	$\mathrm{V}_{\text {DS-BV }}$	$\mathrm{l}_{\text {OUT }}=0$	500			V
Output Current	lout1/lout2		5		120	mA
Quiescent Current	l_{0}	V ${ }_{\text {OUT }}=10 \mathrm{~V}$ REXT No Collection		0.16	0.25	mA
REXT Pin Voltage	$\mathrm{V}_{\text {REXT } 1} / \mathrm{V}_{\text {REXT2 }}$	$\mathrm{V}_{\text {IN }}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT } 1}=\mathrm{V}_{\text {OUT } 2}=10 \mathrm{~V}$		0.6/0.3		V
Output Current Accuracy	$\mathrm{D}_{\text {IOUT }}$	$\mathrm{l}_{\text {OUT }}=5 \sim 60 \mathrm{~mA}$		± 4		\%
Temperature Compensate Point	TSC			130		${ }^{\circ} \mathrm{C}$

- TYPICAL APPLICATION CIRCUIT

The UL23EA is a linear constant current IC that supports the adjust brightness or color temperature in 3 grades. The output current can be adjusted from 5 mA to 120 mA , and constant current accuracy up to $\pm 4 \%$.

Plan1/Plan2 adjust brightness mode application of UL23EA, User can change the size of the output current by turn on/off the power switch, that adjust brightness of LED lights. Changing the REXT external resistance Adjustment of brightness ratio from X\%-50\%-100\%.

Open the switch for the 1 st time, during constant current: $\quad 11=\frac{0.6}{R_{\text {REXT1 }}+R_{\text {rext }}}$

Open the switch for the 2 nd time, during constant current: $12=\frac{0.3}{R_{\text {RExT2 }}}$

Open the switch for the 3rd time, during constant current: $I 3=\frac{0.6}{\text { RREXT2 }^{2}}$

The dimming ratio is $\mathrm{X} \%, 50 \%, 100 \%, \mathrm{X} \%=\frac{\mathrm{Rrext}^{2}}{\mathrm{R}_{\text {REXT1 }}+\mathrm{R}_{\text {REXT2 }}}$

Plan 3/Plan 4 adjust brightness mode application of UL23EA, User can change the size of the output current by turn on/off the power switch, that adjust brightness of LED lights. Changing the REXT external resistance Adjustment of brightness ratio from $100 \%-50 \%-X \%$.

Open the switch for the 1 st time, during constant current: $I 1=\frac{0.6}{R_{\text {REXT2 }}}$

Open the switch for the 2nd time, during constant current: $\quad I 2=\frac{0.3}{\text { RREXT2 }}$

Open the switch for the 3rd time, during constant current: $\quad I 3=\frac{0.6}{R_{\text {REXT1 }}+R_{\text {REXT2 }}}$

The dimming ratio is $\mathrm{X} \%, 50 \%, 100 \%, \mathrm{X} \%=\frac{R_{\text {REXT2 }}}{\mathrm{R}_{\text {REXT1 }}+\mathrm{R}_{\text {REXT2 }}}$

Plan 5/Plan 6 adjust color temperature application of UL23EA, User can change the state of the two output ports by turn on/off the power switch, that adjust the color temperature through the light of two different colored LED lights.
Changing the REXT external resistance can adjustment the output power.
Open the switch for the 1st time, during constant current: $I 1=\frac{0.6}{\text { RREXT2 }}$

Open the switch for the 2nd time, during constant current: $\quad 12=\frac{0.3}{R_{\text {REXT1 }}}+\frac{0.3}{R_{\text {REXT2 }}}$

Open the switch for the 3rd time, during constant current: $I 3=\frac{0.6}{R_{\text {REXT1 }}}$

- TYPICAL APPLICATION CIRCUIT

1. High PF of Adjust Brightness Application

High PF of Adjust Brightness Mode

Typical Applications: $R_{\text {REXT1 }}=90 \Omega, R_{\text {REXT } 2}=10 \Omega, 0.3 S<$ Switching Period $<3 S$
Open the switch for the 1 st time, lout $=3 \mathrm{~mA}$;
Open the switch for the 2nd time, lout $=15 \mathrm{~mA}$;
Open the switch for the 3rd time, $\mathrm{I}_{\text {Out }}=30 \mathrm{~mA}$;
The dimming ratio is $10 \%, 50 \%, 100 \%$
When the switching period $>3 S$, System reset.

■ TYPICAL APPLICATION CIRCUIT (Cont.)

2. No Stroboscopic of Adjust Brightness Application

No Stroboscopic of Adjust Brightness Application

[^0]■ TYPICAL APPLICATION CIRCUIT (Cont.)

3. High PF of Adjust Brightness Application

High PF of Adjust Brightness Application
Typical Applications: $R_{\text {REXT1 }}=90 \Omega, R_{\text {REXT } 2}=10 \Omega, 0.3 S<$ Switching Period $<3 S$
Open the switch for the 1 st time, $l_{\text {out }}=30 \mathrm{~mA}$;
Open the switch for the 2nd time, lout $=15 \mathrm{~mA}$;
Open the switch for the 3rd time, lout=3mA;
The dimming ratio is $100 \%, 50 \%, 10 \%$
When the switching period > 3S, System reset.

■ TYPICAL APPLICATION CIRCUIT (Cont.)

4. No Stroboscopic of Adjust Brightness Application

No Stroboscopic Of Adjust Brightness Application
Typical Applications: $R_{\text {REXT1 }}=180 \Omega, R_{\text {REXT } 2}=20 \Omega, 0.3 S<$ Switching Period $<3 S$
Open the switch for the 1 st time, lout $=30 \mathrm{~mA}$;
Open the switch for the 2nd time, $l_{\text {lout }}=15 \mathrm{~mA}$; Open the switch for the 3rd time, lout $=3 \mathrm{~mA}$; The dimming ratio is $100 \%, 50 \%, 10 \%$ When the switching period $>3 \mathrm{~S}$, System reset.

■ TYPICAL APPLICATION CIRCUIT (Cont.)

5. High PF of adjust color temperature application

High PF of Adjust Color Temperature Mode
Typical Applications: $R_{\text {REXT1 }}=R_{\text {REXT2 }}=10 \Omega, 0.3 S<$ Switching Period $<3 S$
Open the switch for the 1 st time, $\mathrm{l}_{\text {out } 2}=30 \mathrm{~mA}$;
Open the switch for the 2 nd time, $l_{\text {out }}=l_{\text {OUT } 2}=15 \mathrm{~mA}$;
Open the switch for the 3rd time, lout1 $=30 \mathrm{~mA}$;
When the switching period $>3 S$, System reset.

Preliminary

- TYPICAL APPLICATION CIRCUIT (Cont.)

6. No stroboscopic of adjust brightness application

No Stroboscopic Of Adjust Color Temperature Application

Typical Applications: $R_{\text {REXT1 }}=R_{\text {REXT } 2}=20 \Omega, 0.3$ < Switching Period < 3S Open the switch for the 1 st time, $\mathrm{l}_{\text {оut } 2}=30 \mathrm{~mA}$; Open the switch for the 2nd time, $\mathrm{l}_{\text {out } 1}=\mathrm{l}_{\text {Out } 2}=15 \mathrm{~mA}$; Open the switch for the 3rd time, lout $2=30 \mathrm{~mA}$; The dimming ratio is $100 \%, 50 \%, 10 \%$ When the switching period $>3 \mathrm{~S}$, System reset.

■ MULTIPLE IC PARALLEL SCHEMES
UL23EA support multiple IC parallel schemes, High PF of adjust brightness application as shown in the figure .If the output power is too large that the IC over temperature, Multiple IC parallel schemes can be adopted.

Typical Applications: $R_{\text {REXT1 }}=R_{\text {REXT } 3}=R_{\text {REXT } 5}=90 \Omega, R_{\text {REXT } 2}=R_{\text {REXT } 4}=R_{\text {REXT } 6}=10 \Omega$,
0.3 S < Switching Period < 3S;

Open the switch for the 1 st time, $l_{\text {out }}=90 \mathrm{~mA}$;
Open the switch for the 2nd time, lout $=45 \mathrm{~mA}$:
Open the switch for the 3rd time, Iout $=9 \mathrm{~mA}$,
The dimming ratio is $100 \%, 50 \%, 10 \%$
When the switching period $>3 S$, System reset.

■ MULTIPLE IC PARALLEL SCHEMES (Cont.)

UL23EA support multiple IC parallel schemes. No stroboscopic of color temperature application as shown in the figure .If the output power is too large that the IC over temperature, Multiple IC parallel schemes can be adopted.

Typical Applications: $R_{\text {REXT } 1}=R_{\text {REXT } 3}=R_{\text {REXT } 5}=20 \Omega$, R REXT $2=R_{\text {REXT } 4}=R_{\text {REXT } 6}=20 \Omega$, 0.3 S < Switching Period < 3S;

Open the switch for the 1st time, lout2 $=90 \mathrm{~mA}$
Open the switch for the 2nd time, lout1 $=l_{\text {out } 2}=45 \mathrm{~mA}$;
Open the switch for the 3rd time, louti $=90 \mathrm{~mA}$;
When the switching period $>3 S$, System reset.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication heregf.

[^0]: Typical Applications: $R_{\text {REXT1 }}=180 \Omega, R_{\text {REXT } 2}=20 \Omega, 0.3 S<$ Switching Period $<3 S$ Open the switch for the 1st time, lout=3mA;
 Open the switch for the 2nd time, lout=15mA;
 Open the switch for the 3rd time, lout $=30 \mathrm{~mA}$;
 The dimming ratio is $10 \%, 50 \%, 100 \%$
 When the switching period $>3 \mathrm{~S}$, System reset.

