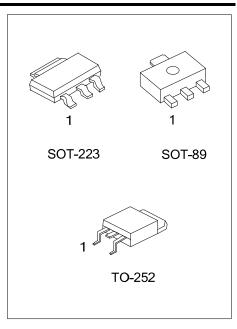
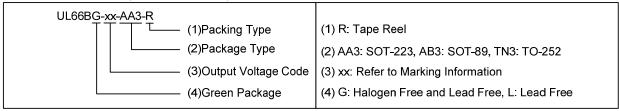
UL66B **CMOS IC Preliminary**


HIGH ACCURACY LINEAR CONSTANT CURRENT LED **DRIVER**

DESCRIPTION

The UTC UL66B is a linear constant current IC with a built-in power MOSFET. The output current can be adjusted from 5mA to 40mA, and constant current accuracy up to \pm 4%. The application scheme is simple and the cost is low. This device also incorporates temperature compensation and thermal shutdown functions.

FEATURES

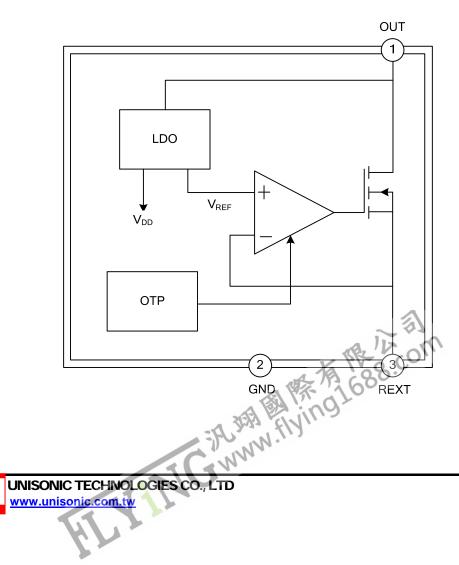

- * 5mA ~ 40mA Output Current
- * Up to ± 4% Constant Current Accuracy
- * No EMC Problem
- * Temperature Compensate
- * Thermal Shutdown

ORDERING INFORMATION

Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
UL66BL-xx-AA3-R	UL66BG-xx-AA3-R	SOT-223	Tape Reel	
UL66BL-xx-AB3-R	UL66BG-xx-AB3-R	SOT-89	Tape Reel	
UL66BL-xx-TN3-R	UL66BG-xx-TN3-R	TO-252	Tape Reel	

Note: xx: Output Voltage, refer to Marking Information.

Cwww.flying1688.com www.unisonic.com.tw 1 of 4 QW-R125-078.b


MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING		
SOT-223		UL66B ☐ L: Lead Free G: Halogen Free Voltage Code 1		
SOT-89	06: 0.6V 03: 0.3V	Voltage Code Date Code L: Lead Free G: Halogen Free		
TO-252		UTC UL66B☐ Voltage Code L: Lead Free G: Halogen Free Date Code Lot Code		

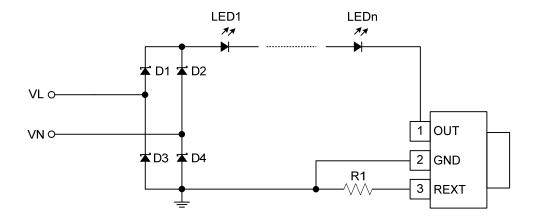
PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT	Current Output Pin.
2	GND	Ground.
3	REXT	Output Current Setting Pin.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
OUT Pin Voltage	V_{OUT}	-0.5 ~ 500	V
OUT Pin Current	I _{OUT}	5 ~ 40	mA
Operating Junction Temperature	T _{OPT}	-40 ~ +150	°C
Storage Junction Temperature	T _{STG}	-50 ~ +150	°C


Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OUT Pin Voltage	V _{OUT}	I _{OUT} =30mA	6.5			V
OUT Pin Withstanding Voltage		I _{OUT} =0	500			V
Output Current	l _{out}		5		40	mA
Quiescent Current	ΙQ	V _{OUT} =10V REXT No Collection		0.16	0.25	mA
REXT Pin Voltage		V _{OUT} =10V		0.3		V
	V _{REXT}			0.6		V
Output Current Error		I _{OUT} =5~40mA		± 4		%
Temperature Compensate Point	T _{CP}			140		°C

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without hotice. This document supersedes and replaces all information supplied prior to the publication hereof.