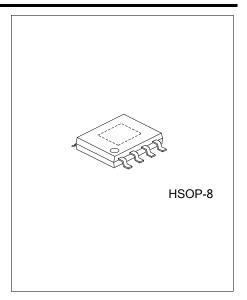
UNISONIC TECHNOLOGIES CO., LTD

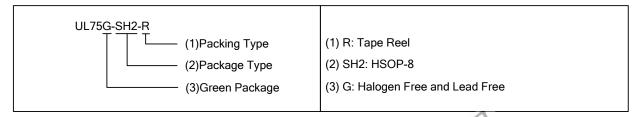

UL75 CMOS IC Preliminary

ADAPTIVE CONDUCTION LINEAR DRIVER

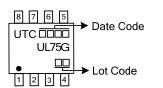
DESCRIPTION

UTC UL75 can drive a plurality of LED strings. When the voltage detecting circuit detects the different voltage level of input voltage, it can control the LED strings. If the input voltage is lower that it will bypass some LED strings. And turn on all LED strings when the input voltage is higher. The number of LEDs in LED array is dependent on the voltage level of the AC power source, That includes of ±10% variations.

UTC UL75 is an ideal solution for LED Lamps (e.g. E27, GU10), General Illumination, LED Strings (e.g. T-8 Tube) and Constant Current Sink.

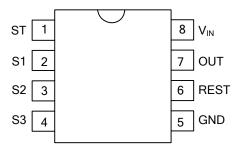


FEATURES


- * Adaptive Conduction.
- * Wide Range, Programmable LED Voltage
- * Output LED Current available from 50mA to 100mA
- * Can be Paralleled for Higher Current
- * 5V to 500V Supply Voltage Range
- * High Efficiency
- * Stable LED Brightness
- * Over Temperature Protection
- * Patent Pending Drive Architecture
- * Low THD

ORDERING INFORMATION

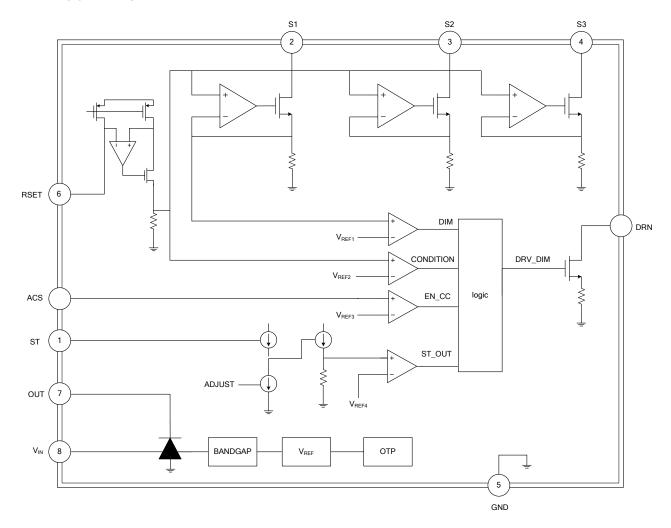
Ordering Number	Package	Packing
UL75G-SH2-R	HSOP-8	Tape Reel



MARKING

www.unisonic.com.tw 1 of 7

PIN CONFIGURATION



PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	ST	Adjust the output power and the soft start function
2	S1	The first LED string constant current output
3	S2	The second LED string constant current output
4	S3	The third LED string constant current output
5	GND	Ground
6	RSET	Set constant current
7	OUT	Power supply
8	V _{IN}	Input AC voltage

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V _{IN}	-0.3 ~ 550	V
Supply Voltage	V _{OUT}	-0.3 ~ 10	V
Output Current, Source Or Sink	Icc	0 ~ 200	mA
ST Input Voltage	V_{ST}	-0.3 ~ 15	V
Power Dissipation (T _A =70 °C)	P_{D}	3000	mW
Junction Temperature	TJ	-55 ~ + 125	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS (Note)

PARAMETER	ARAMETER SYMBOL RATINGS		UNIT
Input Voltage	V _{IN}	140 ~ 375	V
Supply Voltage	V _{OUT}	5.5 ~ 6.5	V
Sink/Source Load Current (steady state)	I _{STEAD}	0 ~ 100	mA
Sink/Source Load Current (peak)	I _{PEAK}	0 ~ 200	mA
Reference Load Current	I _{LOAD}	0 ~ 100	mA
ST Input Voltage	V _{ST}	0 ~ 7	V
Operating Ambient Temperature	T _{ORP}	0 ~ +70	°C

Note: Range over which the device is functional and parameter limits are guaranteed.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Case	$\theta_{ m JC}$	50	°C/W

Note: Thermal resistance junction-alumina with the device soldered on the middle of an alumina supporting substrate measuring 15×20mm; 0.65mm thickness with infinite heat sink.

■ **ELECTRICAL CHARACTERISTICS** (TEMPER=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SECTION						
Input Voltage	V _{IN}		0	220	500	V
Output Led Current	I _{LED}	V _{IN} =110AC, 220AC	0	50	130	mA
Supply Voltage	V_{DD}		5.5	6	6.5	V
Power Efficiency	η	I _{LED} =100mA	0.7	8.0	0.9	
Power Factor	P_{F}	I _{LED} =100mA	0.7	0.9	0.96	
CC SECTION						
The Precision Of Constant	CC	I _{LED} =50mA~100mA		±5		%
Current	CC					
RSET Pin Voltage	V_{SET}		0.594	0.6	0.606	V
Standby Power Consumption				15	25	mW
PROTECTION SECTION						
Short Circuit Protection Current	I _{LED st}	V _{IN} =220AC	120	130	140	mA
Input Voltage Protection	V_{IN_OV}	RST=20.5MΩ	245	265	285	V
LED Limit Current Protection	I _{LED LIM}	V _{IN} =220AC	120	130	140	mA
LDMOS SECTION						
LDMOS Withstand Voltage	BV		500	550	600	V
	I _{ON_S1}			71		mA
LDMOS Current	I _{ON_S2}			85		mA
	I _{ON_S3}			100		mA
TEMPER SETION						
Over Temper Protection	T _{OTP}			145		°C
Over Temper Hysteresis	T _{HYS}			20		°C

Note: The parameters are not 100% tested in production.

■ APPLICATION INFORMATION

Application information

UTC **UL75** is a linear constant current driver IC for LED lighting, which is applied to the non isolated LED driver power supply.

The 500V power transistor is integrated with the constant current drive architecture and control method, which only needs a few external components to achieve excellent constant current characteristics. Piecewise constant current control mode to achieve higher PF value and efficiency,

Built in soft start mechanism and the line network monitor adjust system output power.

LED open circuit protection. LED short circuit protection. sampling resistance short circuit protection. over temperature regulation and other protective functions to improve the reliability of the system.

Start

After the system is powered up, the input voltage is charged on the OUT pin through the depleted MOS, and when the OUT voltage reaches the threshold value, the chip's internal reference circuit begins to work. When the chip is working normally, the required operating current is still through the supply of internal consumption.

Constant current control

The chip is detected the peak current, and the RSET resistance is connected to the input terminal of the peak comparator, which is compared with the threshold voltage 1V. When the RSET voltage reaches the threshold, the LED current is adjusted, and realized the constant current control.

The formula for calculating the LED constant current is I_{LED}=3150/RSET

Among them, RSET is set to LED peak current resistance

Peak current comparator also includes a peak over current protection function. The threshold is about 200mA.

Protection function

UTC **UL75** built in a variety of protection functions, including LED short-circuit protection, LED open circuit protection, sampling circuit short-circuit protection, temperature regulation and protection, etc.

Over temperature adjustment function

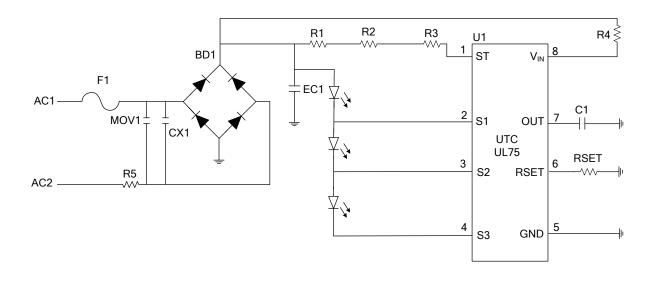
UTC **UL75** has the function of over temperature adjustment, the output current is gradually reduced when the driving power is over, so that the output power and temperature rise is controlled, the power supply is maintained at the set value.

In order to improve the reliability of the system, the chip is internally set to adjust the temperature of the 145°C.

PCB design

In the design of PCB, you need to follow the following guidelines:

OUT bypass capacitor is required to close the OUT pin of the chip.


RSET resistor requires close to the RSET pin of the chip

Between RSET and OUT bypass capacitor resistor connected to the copper foil as short as possible

RSET pin increases in the area of copper clad to improve chip cooling.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.