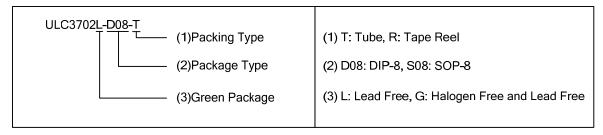
ULC3702 CMOS IC Advance

DUAL MICROPOWER CMOS VOLTAGE COMPARATORS

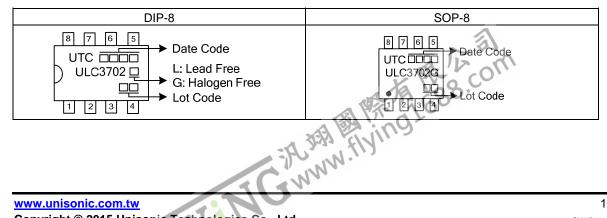
DESCRIPTION

The UTC ULC3702 consists of two independent micropower voltage comparators designed to operate from a single supply and be compatible with modern HCMOS logic systems. The push-pull CMOS output stage drives capacitive loads directly without a power-consuming pullup resistor to achieve the stated response time. Eliminating the pullup resistor not only reduces power dissipation, but also saves board space and component cost. The output stage is also fully compatible with TTL requirements.

DIP-8

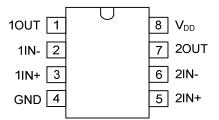

SOP-8

FEATURES


- * Push-Pull CMOS Output Drives Capacitive Loads Without Pullup Resistor, I_O=± 8mA
- * Very Low Power: 100µW (Typ.) at 5V
- * Fast Response Time t_{PLH}=2.7µs (Typ.) With 5-mV Overdrive
- * Single-Supply Operation: 3V ~ 16V

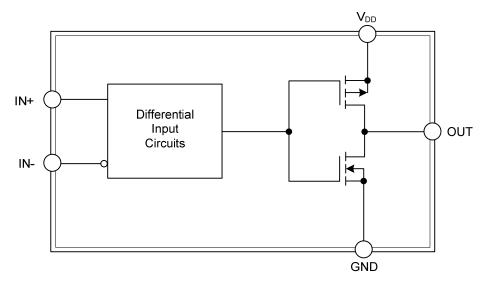
ORDERING INFORMATION

Ordering	Dookogo	Dooking		
Lead Free	Halogen Free	Package	Packing	
ULC3702L-D08-T	ULC3702G-D08-T	DIP-8	Tube	
-	ULC3702G-S08-R	SOP-8	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 5 QW-R104-010.a


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	1OUT	Channel 1 output pin		
2	1IN-	Inverting input for channel 1		
3	1IN+	Non-inverting input for channel 1		
4	GND	Ground		
5	2IN+	Non-inverting input for channel 2		
6	2IN-	Inverting input for channel 2		
7	2OUT	Channel 2 output pin		
8	V_{DD}	Supply voltage input pin		

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT	
Supply Voltage Range (Note 1)		V_{DD}	-0.3 ~ 18	V	
Differential Input Voltage (Note 2	2)	V_{ID}	±18	V	
Input Voltage Range		VI	-0.3 ~ V _{DD}	V	
Output Voltage Range		Vo	-0.3 ~ V _{DD}	V	
Input Current		l _l	±5	mA	
Output Current (Each Output)		lo	±20	mA	
Total Supply Current into V _{DD}			40	mA	
Total Current Out of GND			40	mA	
Dower Discipation	DIP-8	Ь	1000	mW	
Power Dissipation	SOP-8	P _D	725	mW	
Lead Temperature 1,6 mm (1/16 Inch) from		т	260	°C	
Case for 10 Seconds		TL	260	°C	
Operating Free-Air Temperature Range		T _A	-40~85	°C	
Storage Temperature Range		T _{STG}	-65~150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. All voltage values, except differential voltages, are with respect to network ground.
- 3. Differential voltages are at IN+ with respect to IN-.

RECOMMENDED OPERATING CONDITIONS

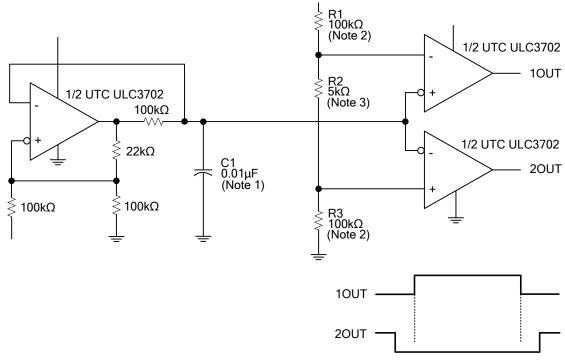
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	V_{DD}	3	5	16	V
Common-Mode Input Voltage	V_{IC}	-0.2		V _{DD} -1.5	V
High-Level Output Current	I _{OH}			-20	mA
Low-Level Output Current	I _{OL}			20	mA
Operating Free-Air Temperature	T _A	-40		85	°C

ELECTRICAL CHARACTERISTICS

(specified operating free-air temperature, V_{DD}=5V, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS (Note 1)		MIN	TYP	MAX	UNIT
Input Offeet Voltage	\/	V _{DD} =5V~10V,	T _A =25°C		1.2	5	mV
Input Offset Voltage	V_{IO}	V _{IC} =V _{ICRmin} , (Note 2)	T _A =-40°C~85°C			7	mV
Input Offeet Current		\/ 2.5\/	T _A =25°C		1		pА
Input Offset Current	I _{IO}	V _{IC} =2.5V	T _A =85°C			1	nA
Input Pice Current		V 2.5V	T _A =25°C		5		pА
Input Bias Current	I _{IB}	V _{IC} =2.5V	T _A =85°C			2	nA
Common Mode Input Voltage	\/		T _A =25°C	0~V _{DD} -1			V
Range	V_{ICR}		T _A =-40°C~85°C	0~V _{DD} -1.5			V
Common Mode Dejection			T _A =25°C		84		dB
Common-Mode Rejection Ratio	CMRR	$V_{IC} = V_{ICRmin}$	T _A =85°C		84		dB
Ratio			T _A =-40°C		83		dB
0 1 1/1 5 : ::	k _{SVR}	V _{DD} =5V~10V	T _A =25°C		85		dB
Supply-Voltage Rejection Ratio			T _A =85°C		85		dB
Ratio			T _A =-40°C		83		dB
High Loyal Output Valtage	V _{OH}	V _{ID} =1V, I _{OH} =-4mA	T _A =25°C	4.5	4.7		V
High Level Output Voltage			T _A =85°C	4.3			V
Outset	V _{OL}	V _{ID} =-1V, I _{OH} =-4mA	T _A =25°C		210	300	mV
Low Level Output Voltage			T _A =85°C		·	400	mV
Supply Current	1	Outpute Law Na Las	T _A =25°C		18	40	μΑ
(Both Comparators)	I _{DD}	Outputs Low, No Load	T _A =-40°C~85°C			65	μΑ

Notes: 1. All characteristics are measured with zero common-mode voltage unless otherwise noted.


SWITCHING CHARACTERISTICS (V_{DD}=5V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CON	IDITIONS	MIN	TYP	MAX	UNIT
			Overdrive=2mV		4.5		μs
Propagation Delay Time,		f=10kHz, C _L =50pF	Overdrive=5mV		2.7		μs
Low-to-High-Level Output	t _{PLH}		Overdrive=10mV		1.9		μs
(Note)			Overdrive=20mV		1.4		μs
<u> </u>			Overdrive=40mV		1.1		μs
		V _I =1.4V Step at IN+			1.1		μs
			Overdrive=2mV		4		μs
Propagation Delay Time,			Overdrive=5mV		2.3		μs
High-to-Low-Level Output	t _{PHL}	f=10kHz, C _L =50pF	Overdrive=10mV		1.5		μs
(Note)			Overdrive=20mV		0.95		μs
			Overdrive=40mV		0.65		μs
		V _I =1.4V Step at IN+			0.15		μs
Fall Time	t _f	f=10kHz, C _L =50pF	Overdrive=50mV		50		ns
Rise Time	t _r	f=10kHz, C _L =50pF	Overdrive=50mV		125		ns
Note: Simultaneous switching	or inputs ca	IT=10kHZ, CL=50pF uses degradation in or	Wing 1688	COL			
UNISONIC TEC	HINOLOGI	ESCO (TD					4 of 5

^{2.} The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

TYPICAL APPLICATION CIRCUIT

Notes: 1. Adjust C1 for a change in oscillator frequency where: $1/f=1.85(100k\Omega)C1$

- 2. Adjust R1 and R3 to change duty cycle
- 3. Adjust R2 to change deadtime

Figure 1. Two-Phase Nonoverlapping Clock Generator

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.