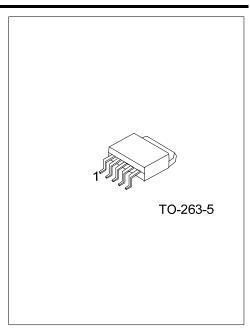
**ULE4275** 

**Preliminary** 


# LINEAR INTEGRATED CIRCUIT

# **5-V LOW-DROPOUT VOLTAGE** REGULATOR

#### DESCRIPTION

The UTC ULE4275 is a monolithic integrated low-dropout voltage regulator. The device regulates an input voltage up to 45V to  $V_{OUT}$  = 5V (typical). The device can drive loads up to 450mA. It also provides overcurrent protection and overtemperature protection for control of the state of the output voltage. The device generates a reset signal for an output voltage, V<sub>OUT,rt</sub>, of 4.65V (typical). By the use of an external delay capacitor, one can program the reset delay time.

The input capacitor, CIN, compensates for line fluctuation. Using a resistor of approximately 1Ω in series with C<sub>IN</sub> dampens the oscillation of input inductance and input capacitance. The output capacitor, C<sub>OUT</sub>, stabilizes the regulation circuit. The specification for stability is at  $C_{OUT} \ge 22\mu F$  and  $ESR \le 5\Omega$ , within



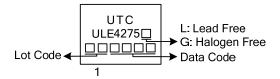
the operating temperature range. Stability for electrolytic capacitors specifically is at C<sub>OUT</sub> ≥ 68µF within the operating temperature range.

The control amplifier compares a reference voltage to a voltage that is proportional to the output voltage and drives the base of the series transistor through a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The device also incorporates a number of internal circuits for protection against: overload, overtemperature, and reverse polarity.

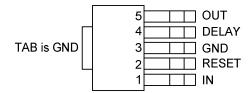
#### **FEATURES**

- \* Qualified for Automotive Applications
- \* Output Voltage 5V ± 2%
- \* Very Low Current Consumption
- \* Power-On and Undervoltage Reset

- \* Reset Low-Level Output Voltage<1V
- \* Very Low Dropout Voltage
- \* Internal Short-Circuit Current Limiting
- \* Reverse-Polarity Proof


#### ORDERING INFORMATION

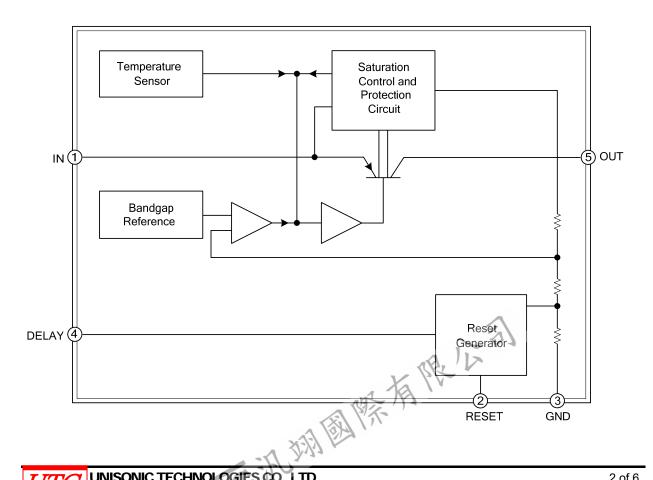
| Ordering                      | Number         | Dookogo  | Dealing   |  |  |
|-------------------------------|----------------|----------|-----------|--|--|
| Lead Free                     | Halogen Free   | Package  | Packing   |  |  |
| ULE4275L-TQ5-T ULE4275G-TQ5-T |                | TO-263-5 | Tube      |  |  |
| ULE4275L-TQ5-R                | ULE4275G-TQ5-R | TO-263-5 | Tape Reel |  |  |




www.unisonic.com.tw 1 of 6

# **MARKING**




# **PIN CONFIGURATION**



## **PIN DESCRIPTION**

| PIN NO. | PIN NAME | DESCRIPTION                                                                           |
|---------|----------|---------------------------------------------------------------------------------------|
| 1       | IN       | Input. Connect to ground as close to device as possible, through a ceramic capacitor. |
| 2       | RESET    | Reset output. Open-collector output                                                   |
| 3       | GND      | Ground. Internally connected to heatsink                                              |
| 4       | DELAY    | Reset delay. Connect to ground with a capacitor to set delay time.                    |
| 5       | OUT      | Output. Connect to ground with≥22μF capacitor, ESR<5Ω at 10kHz.                       |

# **BLOCK DIAGRAM**



# ■ **ABSOLUTE MAXIMUM RATING** (over operating free-air temperature range (unless otherwise noted))

| PARAMETER                      |                             | SYMBOL             | RATINGS | UNIT |
|--------------------------------|-----------------------------|--------------------|---------|------|
| Input Voltage Range IN         |                             | \/                 | -42~45  | V    |
| (Note 1)                       | DELAY                       | V <sub>I</sub>     | -0.3~7  | V    |
| Output Voltage OUT Range RESET |                             |                    | -1~16   | V    |
|                                |                             | Vo                 | -0.3~25 | V    |
| Input Current DELAY            |                             | l <sub>l</sub>     | ±2      | mA   |
| Output Current                 |                             | Io                 | ±5      | mA   |
| Operating Junction Temperature |                             | $T_J$              | -40~150 | °C   |
| Storage Temperature            |                             | T <sub>STG</sub>   | -65~150 | °C   |
| Electrostatic                  | Human body model (HBM)      | V <sub>(ESD)</sub> | 6000    | V    |
| Discharge                      | ischarge Machine model (MM) |                    | 400     | V    |

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. All voltage values are with respect to the network ground terminal.

# ■ RECOMMENDED OPERATING CONDITIONS

(over operating free-air temperature range (unless otherwise noted))

| PARAMETER            | SYMBOL | MIN | TYP | MAX | UNIT |
|----------------------|--------|-----|-----|-----|------|
| Input Voltage        | Vı     | 5.5 |     | 42  | V    |
| Junction Temperature | TJ     | -40 |     | 150 | °C   |

# **■ THERMAL RESISTANCES CHARACTERISTICS**

| PARAMETER                              | SYMBOL        | RATINGS | UNIT |
|----------------------------------------|---------------|---------|------|
| Junction-to-Ambient Thermal Resistance | $\theta_{JA}$ | 32.8    | °C/W |
| Junction-to-Case                       | θ.ic          | 38      | °C/W |





## **■ ELECTRICAL CHARACTERISTICS**

(over recommended operating free-air temperature range,  $V_I=13.5V$ ,  $T_J=-40^{\circ}C\sim150^{\circ}C$  (unless otherwise noted) (see Test Circuit))

| PARAMETER                                                           | SYMBOL                          | TEST CONDITIONS                                                        |                      | MIN | TYP  | MAX | UNIT |
|---------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------|----------------------|-----|------|-----|------|
| Output Voltage                                                      | W                               | I <sub>O</sub> =5mA~400mA, V <sub>I</sub> =6V~28V                      |                      | 4.9 | 5    | 5.1 | V    |
| Output Voltage                                                      | Vo                              | I <sub>O</sub> =5mA~200mA, V <sub>I</sub> =                            | :6V~40V              | 4.9 | 5    | 5.1 | V    |
| Output Current Limit                                                | Ιο                              |                                                                        |                      | 350 | 700  | 950 | mA   |
|                                                                     |                                 | I <sub>O</sub> =1mA                                                    | T <sub>J</sub> =25°C |     | 150  | 200 | μΑ   |
| Current Consumption, I <sub>q</sub> =I <sub>I</sub> -I <sub>O</sub> |                                 |                                                                        | TJ≤85°C              |     | 150  | 220 | μΑ   |
| Current Consumption, Iq-II-IO                                       | ΙQ                              | I <sub>O</sub> =250mA                                                  |                      |     | 7.5  | 18  | mA   |
|                                                                     |                                 | I <sub>O</sub> =400mA                                                  |                      |     | 12   | 22  | mA   |
| Dropout Voltage (Note)                                              | $V_{DO}$                        | I <sub>O</sub> =300mA, V <sub>do</sub> =V <sub>I</sub> -V <sub>O</sub> |                      |     | 250  | 500 | mV   |
| Load Regulation                                                     |                                 | I <sub>O</sub> =5mA~400mA                                              |                      |     | 15   | 30  | mV   |
| Line Regulation                                                     |                                 | $\Delta V_1$ =8V~32V, I <sub>O</sub> =5m.                              | A                    | -15 | 5    | 15  | mV   |
| Power-Supply Ripple Rejection                                       | PSRR                            | $f_r$ =100Hz, $V_r$ =0.5 $V_{pp}$                                      |                      |     | 60   |     | dB   |
| Temperature Output-Voltage Drift                                    | $\frac{\Delta V_{O}}{\Delta T}$ |                                                                        |                      |     | 0.5  |     | mV/K |
| RESET Switching Threshold                                           | $V_{O,rt}$                      |                                                                        |                      | 4.5 | 4.65 | 4.8 | V    |
| RESET Output Low Voltage                                            | $V_{ROL}$                       | R <sub>ext</sub> ≥5kΩ, V <sub>O</sub> >1V                              |                      |     | 0.2  | 0.4 | V    |
| RESET Output Leakage Current                                        | I <sub>ROH</sub>                | V <sub>ROH</sub> =5V                                                   |                      |     | 0    | 10  | μΑ   |
| RESET Charging Current                                              | $I_{D,c}$                       | V <sub>D</sub> =1V                                                     |                      | 3   | 5.5  | 9   | μΑ   |
| RESET Upper Timing Threshold                                        | $V_{DU}$                        |                                                                        |                      | 1.5 | 1.8  | 2.2 | V    |
| RESET Lower Timing Threshold                                        | $V_{DRL}$                       |                                                                        |                      | 0.2 | 0.4  | 0.7 | V    |

Note: Measured when the output voltage  $V_O$  has dropped 100 mV from the nominal value obtained at  $V_I$ =13.5V.

## SWITCHING CHARACTERISTICS

(over operating free-air temperature range (unless otherwise noted) (see Figure 1))

| PARAMETER           | SYMBOL          | TEST CONDITIONS      | MIN | TYP | MAX | UNIT |
|---------------------|-----------------|----------------------|-----|-----|-----|------|
| RESET Delay Time    | $t_{rd}$        | C <sub>D</sub> =47nF | 10  | 16  | 22  | ms   |
| RESET Reaction Time | t <sub>rr</sub> | C <sub>D</sub> =47nF |     | 0.5 | 2   | μs   |



## **TIMING DIAGRAM**

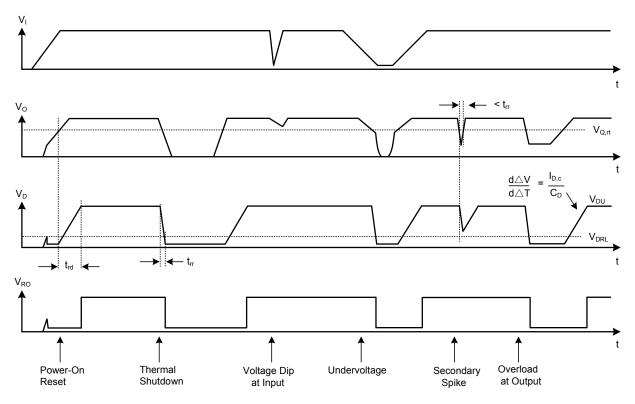
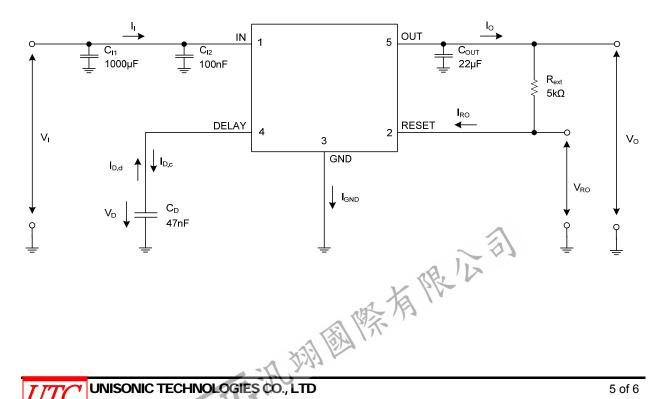
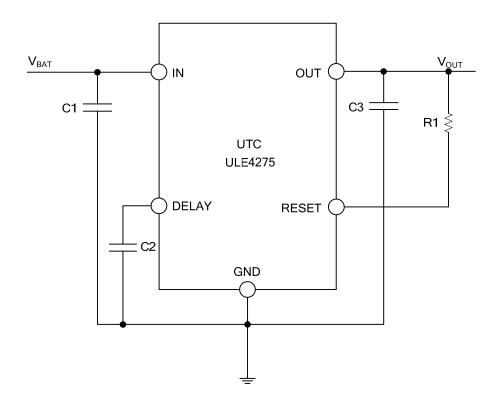





Figure 1. Reset Timing Diagram

## **TEST CIRCUIT**



## **■ TYPICAL APPLICATION CIRCUIT**



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.