**ULV724 CMOS IC Preliminary** 

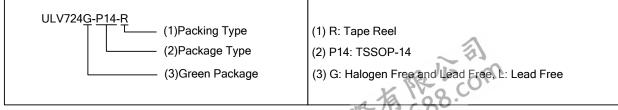
# Low-POWER RAIL-TO-RAIL I/O CMOS QUAD OPERATIONAL **AMPLIFIER**

#### DESCRIPTION

The UTC ULV724 (quad) is a low cost rail to rail input and output guad OP AMP. The UTC ULV724 is low noise, low voltage, and low power supply current, that can be designed into a wide range of applications. The UTC ULV724 is designed to provide optimal performance in low voltage and low noise systems. It provides rail-to-rail output swing into heavy loads.

Low quiescent current 1.3mA per channel at 5V can supply 11MHz bandwidth and 8.5V/µs slew rate. The UTC ULV724 suits for Sensors, Active Filters, Audio, A/D Converters, Test Equipment, Communications, Battery-Powered Instrumentation and photodiode amplifiers, Cellular and Cordless Phones, Laptops and PDAs.

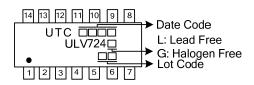
The quad version UTC ULV724 is specified over the extended industrial temperature range (-40°C~+125°C). The operating supply range is from 2.1V to 5.5V.



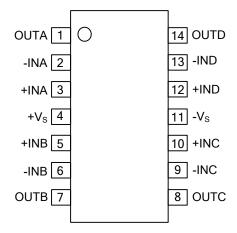

- \* Supply Voltage Range: 2.1V~5.5V
- \* Input Voltage Range =-  $0.1V\sim+5.6V$  with  $V_S=5.5V$
- \* Low Supply Current: 1.3mA/Amplifier
- \* Low offset voltage : 1.5mV Typical
- \* Rail-to-Rail Input and Output
- \* High Gain Bandwidth Product: 11MHz
- \* High Slew Rate: 8.5V/µs

#### ORDERING INFORMATION

| Ordering      | Number        | Doolsono | Packing   |  |
|---------------|---------------|----------|-----------|--|
| Lead Free     | Halogen Free  | Package  |           |  |
| ULV724L-P14-R | ULV724G-P14-R | TSSOP-14 | Tape Reel |  |


Note: xx: Output Voltage, refer to Marking Information.



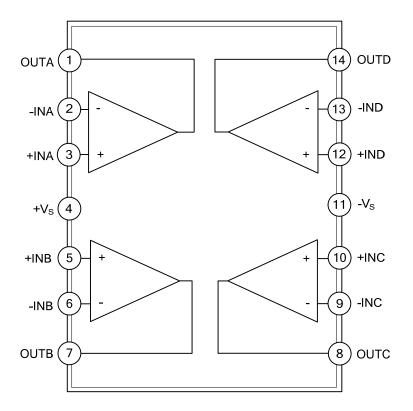

TSSOP-14

www.unisonic.com.tw 1 of 6 QW-R105-065.a

## ■ MARKING



### **■ PIN CONFIGURATION**




## **■ PIN DESCRIPTION**

| PIN NO. | PIN NAME        | DESCRIPTION               |
|---------|-----------------|---------------------------|
| 1       | OUTA            | Output of A AMP           |
| 2       | -INA            | Invert input of A AMP     |
| 3       | +INA            | Non-invert input of A AMP |
| 4       | +V <sub>S</sub> | Positive supply           |
| 5       | +INB            | Non-invert input of B AMP |
| 6       | -INB            | Invert input of B AMP     |
| 7       | OUTB            | Output of B AMP           |
| 8       | OUTC            | Output of C AMP           |
| 9       | -INC            | Invert input of C AMP     |
| 10      | +INC            | Non-invert input of C AMP |
| 11      | -V <sub>S</sub> | Negative supply           |
| 12      | +IND            | Non-invert input of D AMP |
| 13      | -IND            | Invert input of D AMP     |
| 14      | OUTD            | Output of D AMP           |



# **BLOCK DIAGRAM**





# ABSOLUTE MAXIMUM RATING (T<sub>A</sub>=25°C, unless otherwise specified)

| PARAMETER                                          | SYMBOL           | RATINGS                      | UNIT |
|----------------------------------------------------|------------------|------------------------------|------|
| Supply Voltage, +V <sub>S</sub> to -V <sub>S</sub> | Vs               | 7                            | V    |
| Input Common Mode Voltage Range                    | $V_{CM}$         | $(-V_S)-0.3 \sim (+V_S)+0.3$ | V    |
| Junction Temperature                               | $T_J$            | +150                         | °C   |
| Operating Temperature Range                        | T <sub>OPR</sub> | -40 ~ +125                   | °C   |
| Storage Temperature Range                          | T <sub>STG</sub> | -65 ~ +150                   | °C   |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

### **ELECTRICAL CHARACTERISTICS**

 $(T_A=25^{\circ}C, V_S=+5V, V_{CM}=V_S/2, R_L=600\Omega, unless otherwise specified)$ 

| (1A-25 C, VS-+5V, VCM-VS/2, R  | L-00012, un              | iess offici wise specified)                             | _   |            |     |               |
|--------------------------------|--------------------------|---------------------------------------------------------|-----|------------|-----|---------------|
| PARAMETER                      | SYMBOL                   | TEST CONDITIONS                                         | MIN | TYP        | MAX | UNIT          |
| INPUT CHARACTERISTICS          |                          |                                                         |     |            |     |               |
| Input Offset Voltage           | Vos                      |                                                         |     | 1.5        | 4   | mV            |
| Input Bias Current             | lΒ                       |                                                         |     | 1          |     | pА            |
| Input Offset Current           | los                      |                                                         |     | 1          |     | pА            |
| Common-Mode Voltage Range      | V <sub>CM</sub>          | V <sub>S</sub> =5.5V                                    |     | -0.1~+ 5.6 |     | V             |
|                                |                          | V <sub>S</sub> =5.5V,                                   | 67  | 83         |     | dB            |
| Common-Mode Rejection Ratio    | CMRR                     | V <sub>CM</sub> =-0.1V~4V                               |     | 7.5        |     | ID            |
|                                |                          | V <sub>S</sub> =5.5V, V <sub>CM</sub> =-0.1V~5.6V       | 60  | 75         |     | dB            |
| Open-Loop Voltage Gain         | A <sub>OL</sub>          | R <sub>L</sub> =600Ω, Vo=0.15V~4.85V                    | 82  | 89         |     | dB            |
|                                |                          | R <sub>L</sub> =10kΩ, Vo=0.05V~4.95V                    | 96  | 102        |     | dB            |
| Input Offset Voltage Drift     | $\Delta V_{OS}/\Delta_T$ |                                                         |     | 2.1        |     | μV/°C         |
| OUTPUT CHARACTERISTICS         | <u> </u>                 | In                                                      |     |            |     |               |
| Output Voltage Swing from Rail | Vo                       | R <sub>L</sub> =600Ω                                    |     | 0.076      |     | V             |
|                                |                          | R <sub>L</sub> =10kΩ                                    | _   | 0.006      |     | V             |
| Output Current                 | lout                     |                                                         | 52  | 67         |     | mA            |
| Closed-Loop Output Impedance   |                          | f =1MHz, G=1                                            |     | 8.5        |     | Ω             |
| POWER SUPPLY                   | ı                        |                                                         |     | 1          |     | 1             |
| Operating Voltage Range        |                          |                                                         | 2.1 |            | 5.5 | V             |
| Power Supply Rejection Ratio   | PSRR                     | Vs=+2.1V~+5.5V V <sub>CM</sub> =(-V <sub>S</sub> )+0.5V | 68  | 82         |     | dB            |
| Quiescent Current / Amplifier  | $I_Q$                    | I <sub>OUT</sub> =0                                     |     | 1.3        | 1.6 | mA            |
| DYNAMIC PERFORMANCE            | 1                        |                                                         |     |            |     | 1             |
| Gain-Bandwidth Product         | GBP                      |                                                         |     | 11         |     | MHz           |
| Phase Margin                   | φο                       |                                                         |     | 62         |     | 0             |
| Full Power Bandwidth           | BW <sub>P</sub>          | <1% Distortion                                          |     | 400        |     | kHz           |
| Slew Rate                      | SR                       | G=1, 2V Output Step                                     |     | 8.5        |     | V/µs          |
| Settling Time to 0.1%          | ts                       | G=1, 2V Output Step                                     |     | 0.21       |     | μs            |
| Overload Recovery Time         | t <sub>OR</sub>          | V <sub>IN</sub> ×Gain=V <sub>S</sub>                    |     | 0.6        |     | μs            |
| NOISE PERFORMANCE              |                          |                                                         |     |            |     |               |
| Voltage Noise Density          | e <sub>N</sub>           | f=1kHz                                                  |     | 12.5       |     | nV/ √ Hz      |
| Voltage Noise Density          | ON                       | f=10kHz                                                 |     | 8.5        |     | nV/ √ Hz      |
|                                |                          | f=10kHz                                                 | 12  | ow         |     |               |
| UNISONIC TECHI                 | NOLOGIES<br>1.tw         | SCO., LTD                                               |     |            | QW- | <b>4 of</b> 6 |

## TYPICAL APPLICATION CIRCUIT

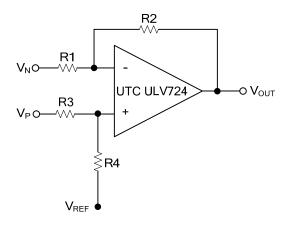



Figure 1. Differential Amplifier

Figure 1 is the differential amplifier. If the resistors ratios are equal (R4/R3=R2/R1), then  $V_{OUT}=(V_P-V_N)\times R2/R1+V_{REF}$ .

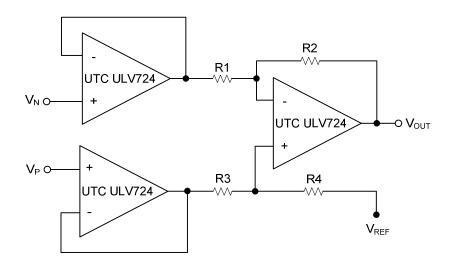



Figure 2. Instrumentation Amplifier

The circuit in Figure 2 performs the same function as that in Figure 1 but with the high input impedance.



# ■ TYPICAL APPLICATION CIRCUIT (Cont.)

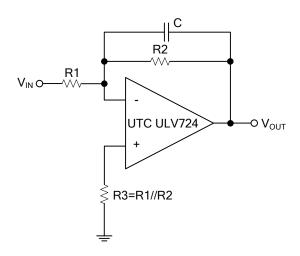



Figure 3. Low Pass Active Filter

Figure 3 is the low pass filter. It's DC gain is -R2/R1 and the -3dB corner frequency is  $1/2\pi R_2C$ .

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.