

UNISONIC TECHNOLOGIES CO., LTD

ULV8542

Preliminary

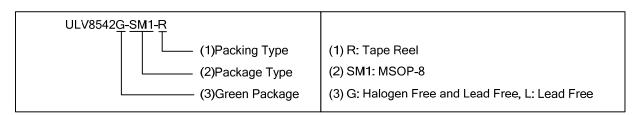
CMOS IC

1.1MHz, 42µA RAIL-TO-RAIL **I/O CMOS DUAL AMPS**

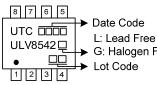
DESCRIPTION

The UTC ULV8542 is a low cost rail to rail input and output dual OP AMP, Features in a wide input common-mode voltage range and output voltage swing. The minimum operating supply voltage down to 2.1V and the maximum recommended supply voltage is 5.5V. The operating temperature range extended -40°C to +125°C.

UTC ULV8542 suit for piezoelectric sensors, integrators, and photodiode amplifiers based on very low input bias currents of 0.5pA. Rail-to-rail inputs and outputs are useful to design buffering ASIC in single-supply systems.

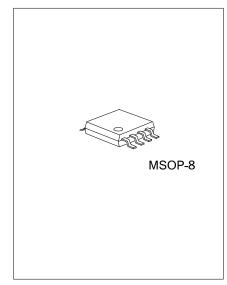

The common applications for this device especially in very low power systems such as safety monitoring, portable equipment.

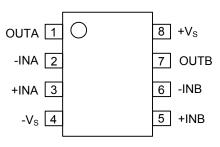
FEATURES


- * Low Cost
- * Operating voltage range:2.1V~ 5.5V
- * Low offset voltage:0.8mV Typical
- * Very low input bias currents: 0.5pA
- * Rail-to-Rail Input and Output
- * Unity Gain Stable
- * Gain Bandwidth Product: 1.1MHz

ORDERING INFORMATION

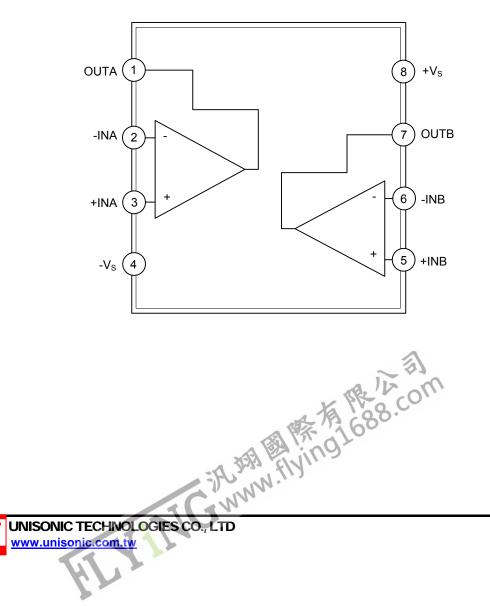
Ordering Number		Dookago	Deaking	
Lead Free	Halogen Free	Package	Packing	
ULV8542L-SM1-R	ULV8542G-SM1-R	MSOP-8	Tape Reel	


MARKING



G: Halogen Free

PIN CONFIGURATION



PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUTA	Output pin of A AMP
2	-INA	Invert input pin of A AMP
3	+INA	Non-invert input of A AMP
4	-Vs	Negative supply
5	+INB	Non-invert input of B AMP
6	-INB	Invert input pin of B AMP
7	OUTB	Output pin of B AMP
8	+Vs	Positive supply

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage, Vs to -Vs	Vs	7.5	V
Common-Mode Input Voltage	V _{CM}	(-V _S)-0.5 ~ (+V _S)+0.5	V
Junction Temperature	TJ	+150	°C
Operating Temperature Range	T _{OPR}	-40 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

 $(V_S=+5V, R_L=100k\Omega$ connected to Vs/2, and V_{OUT}=Vs/2, T_A=25°C, unless otherwise specified)

	, and					
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT CHARACTERISTICS	•		•			•
	V			±0.8	±3.5	mV
Input Offset Voltage	Vos	(Note)			±5.4	mV
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$			2.7		µV/°C
Input Bias Current	IB			0.5		pА
Input Offset Current	los			0.5		pА
Common-Mode Voltage Range	V _{CM}	V _S =5.5V	-0.1		5.6	V
		V _S =5.5V, V _{CM} =- 0.1V~4V	72	88		dB
Common-Mode Rejection Ratio	CMRR	(Note)	72			dB
	CIVIER	V _S =5.5V, V _{CM} =-0.1V~5.6V	60	78		dB
		(Note)	57			dB
		R _L =5KΩ, Vo=0.1V~4.9V	80	90		dB
Open-Loop Voltage Gain	A _{OL}	(Note)	78			dB
Open-Loop Voltage Gain	AOL	R _L =100KΩ, Vo=0.035V~4.965V	85	94		dB
		(Note)	82			dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing from Rail	Vo	R _L =100KΩ		0.008		V
Output Current	I _{OUT}		20	23		mA
Output Current		(Note)	18			mA
POWER SUPPLY						
Operating Voltage Range	Vs		2.1		5.5	V
		(Note)	2.5		5.5	V
Power Supply Rejection Ratio			76	92		dB
	PSRR	V _S =+2.5V~+5.5V V _{CM} =(-V _S)+0.5V	70			dB
			(Note)			чD
Quiescent Current / Amplifier	Ι _Q	I _{OUT} =0		70	90	μA
		(Note)			100	μA
DYNAMIC PERFORMANCE (CL	=100pF)					1
Gain-Bandwidth Product	GBP			1.1		MHz
Slew Rate	SR	G=+1, 2V Output Step		0.8		V/µs
		G=+1, 2 V Output Step		5.3		μs
Settling Time to 0.1%	t _S					
Settling Time to 0.1% Overload Recovery Time	t _s t _{OR}	V _{IN} ·Gain=Vs	~	2.6		μs
Overload Recovery Time		• •	या			μs
		• •	150	2.6		µs nV/√Hz

Note: Denotes the specifications which apply over the operating temperature range (-40°C~125°C).

4 of 5

TYPICAL APPLICATION CIRCUIT

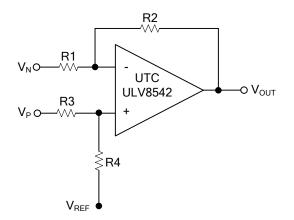


Figure 1. Differential Amplifier

Note: Figure 1 is the differential amplifier. V_{OUT}=(V_P-V_N)×R2/R1+Vref (when R4/R3=R2/R1).

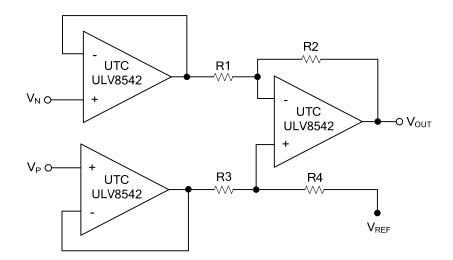


Figure 2. Instrumentation Amplifier

Note: The circuit in Figure 2 performs the same function as that in Figure 1 but with the high input impedance.

TYPICAL APPLICATION CIRCUIT (Cont.)

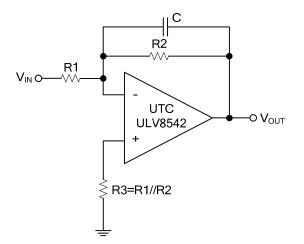


Figure 3. Low Pass Active Filter

Note: Figure 3 is the low pass filter. It's DC gain is -R2/R1 and the -3dB corner frequency is $1/2\pi R_2 C$.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

