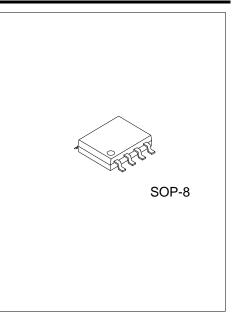
UM2122 Preliminary

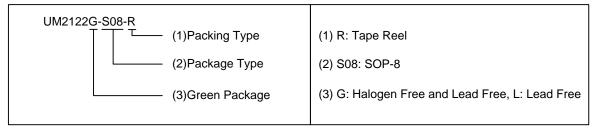
LINEAR INTEGRATED CIRCUIT

ULTRA LOW NOISE DUAL OPERATIONAL AMPLIFIER

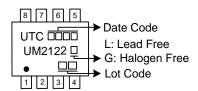

DESCRIPTION

The UTC UM2122 is an ultra low noise dual operational amplifier built using an advanced bipolar process. It can be operated at a very low supply voltage (±2V), while maintaining a low saturation output voltage.

The features of ultra low noise, low operating voltage, and low saturation voltage are suitable for microphone amplifier of digital audio items such as portable MD, DAT, and others.

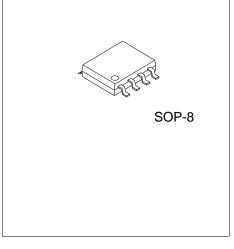


- * Operating Voltage: ±2.0V ~ ±8.0V
- * Ultra Low Noise Voltage: 1.5nV/√Hz (typ.) @ f=1kHz.
- * Low Saturation Output Voltage: 0.3V (typ.)
- * Bipolar Technology

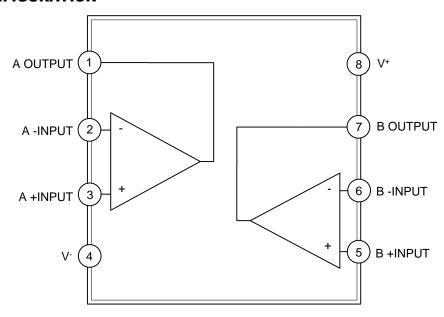


ORDERING INFORMATION

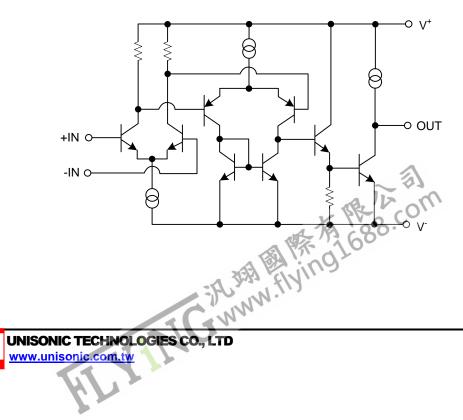
Ordering	Dookogo	Doolsing		
Lead Free	Halogen Free	Package	Packing	
UM2122L-S08-R	UM2122G-S08-R	SOP-8	Tape Reel	



MARKING



CWWW.flying1688.com www.unisonic.com.tw 1 of 4 QW-R105-067.b


PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	A OUTPUT	Output of A AMP
2	A -INPUT	Invert input of A AMP
3	A +INPUT	Non-invert input of A AMP
4	V	Negative power supply
5	B +INPUT	Non-invert input of B AMP
6	B -INPUT	Invert input of B AMP
7	B OUTPUT	Output of B AMP
8	V ⁺	Positive power supply

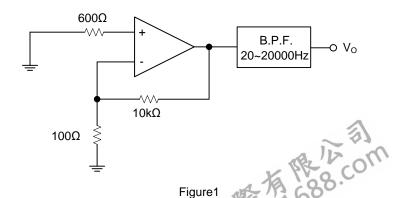
BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V ⁻	±10	V
Differential Input Voltage	V_{ID}	±0.5	V
Input Voltage	V _{IC}	±10 (Note 2)	V
Power Dissipation	P _D	300	mW
Operating Temperature Range	T _{OPR}	-40 ~ + 85	°C
Storage Temperature Range	T _{STG}	-40 ~ +150	°C

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. When the supply voltage is less than ±10V, the absolute maximum input voltage is equal to the supply voltage.


■ ELECTRICAL CHARACTERISTICS (V⁺=5V T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	Vope		±2.0		±8.0	V
Operating Current	Icc	V _{IN} =0V, R _L =∞Ω		7.0	9.5	mA
Input Offset Voltage	V_{IO}	$R_S=500\Omega$		1.0	6.0	mV
Input Offset Current	I _{IO}			0.45	1.50	μΑ
Input Bias Current	I_{B}			3.6	8.0	μΑ
Large Signal Voltage Gain	A_V	R _L ≥10kΩ	80	100		dB
Input Common Mode Voltage Range	V_{ICM}		±0.7	±1.0		V
Common-Mode Rejection Ratio	CMR		60	74		dB
Supply Voltage Rejection Ratio	SVR		60	80		dB
Maximum Output Voltage	V_{OM}	R _L ≥2.5kΩ	±2.0	±2.2		V
Slew Rate	SR	$G_V=20dB, V_{IN}=\pm 0.1V$		2		V/µs
Gain Bandwidth Product	GB			12		MHz
Equivalent Input Noise Voltage 1	e _{n1}	$R_S=10\Omega$, f=1kHz		1.5		nV√Hz
Equivalent Input Noise Voltage 2	e _{n2}	Figure1		0.56	0.75	μVrms
Channel Separation	CS	f=1kHz		90		dB
Total Harmonic Distortion	THD	V_0 =1Vrms, f=1kHz, G_V =20dB, R_L =2.5k Ω		0.003		%

Note: Between 30 to 50dB voltage gain is recommended.

In case of voltage gain less than 30dB, phase compensation by external circuit is required.

The voltage follower circuit must not be used.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.