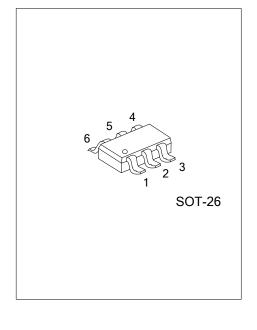
UNISONIC TECHNOLOGIES CO., LTD

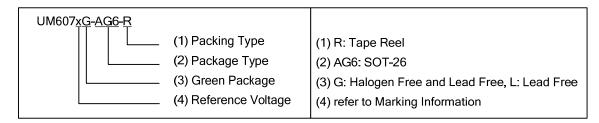
UM607

LINEAR INTEGRATED CIRCUIT


CC, CV CONTROL FOR **BATTERY CHARGER AND ADAPTOR**

DESCRIPTION

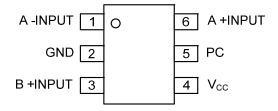
The UTC UM607 is a voltage and current control IC which has precision voltage reference. These devices have been optimized for battery charger, adapter, second controller of switching regulator systems, and other battery systems.


FEATURES

- * Constant Voltage Control (CV) and Constant Current Control (CC)
- * Input voltage ranging from 2.2V to 14V
- * 40mA photo coupler drive current typically
- * 1mA maximum operating current
- * Internal Precision Voltage Reference : 1.240V ± 1%
- * Easy compensation and low external component count.

■ ORDERING INFORMATION

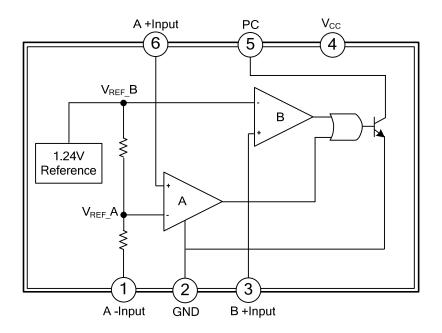
Ordering	Dookogo	Dooking		
Lead Free	Halogen Free	Package	Packing	
UM607xL-AG6-R	UM607xG-AG6-R	SOT-26	Tape Reel	



www.unisonic.com.tw 1 of 6

■ MARKING

PACKAGE	A-CH REFERENCE VOLTAGE	CODE	MARKING
SOT-26	150mV	B	6 5 4
	70mV	D	☐ ☐ ☐ ☐ ☐ L: Lead Free UM7☐ → G: Halogen Free Reference Voltage 1 2 3


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION	
1	A-INPUT	Input Pin of the Current Control Loop	
2	GND	Ground Line. 0V Reference For All Voltages	
3	B+INPUT	Input Pin of the Voltage Control Loop	
4	V_{CC}	DC Supply Line	
5	PC	Photo Coupler (P/C) Drive Pin. Sinking Current Only	
6	A+INPUT	Input Pin of the Current Control Loop	

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
DC Supply Voltage	V _{CC}	16	V
Power Dissipation (Note 2)	P_D	500	mW
Operating Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-55 ~ + 150	°C

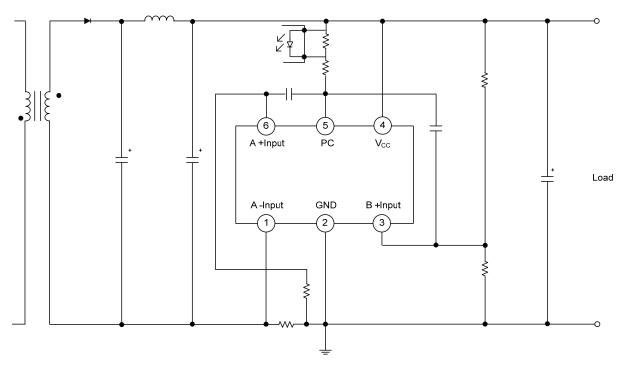
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

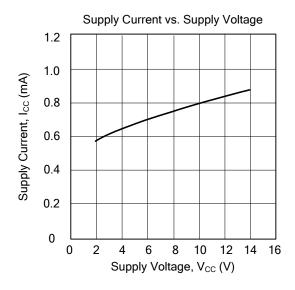
PARAMETER	SYMBOL	RATINGS	UNIT
DC Supply Voltage	V _{CC}	2.2 ~ 14	V

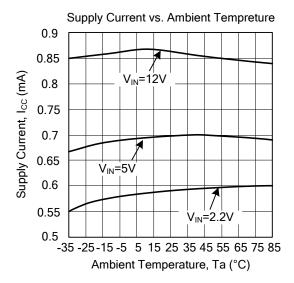
■ ELECTRICAL CHARACTERISTICS (V_{CC} = 5V, Ta=25°C, unless otherwise specified)

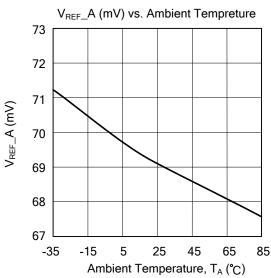

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Operating Current	I _{CC}	I _{PC} = off			0.6	1.0	mA
Leakage Current	I _{PC(LEAK)}	V ⁺ =V _{PC} =14V				10	μA
Saturation Voltage	$V_{PC(SAT)}$	I _{PC} = 20 mA	I _{PC} = 20 mA		500	700	mV
PC Terminal Current	I _{PC}			20	40	70	mA
Output Voltage High	V _{OH}	R_L = 30K Ω			V _{CC} -0.1		V
A CH : Current Control Loop							
Reference Voltage	V	I _{PC} = 2.5mA	UM607B	144	150	156	mV
Reference voltage	$V_{REF(A)}$		UM607D	66.5	70	73.5	
Input Bias Current	I _{B(A)}				20	50	μA
Transconduction Gain (Note 1)	$G_{M(A)}$			1.5	8		mA/mV
B CH : Voltage Control Loop							
Reference Voltage (Note 2)	$V_{REF(B)}$	I _{PC} = 1.5mA		1.227	1.240	1.253	V
Input Bias Current	I _{B(B)}		•		50	500	nA
Transconduction Gain (Note 3)	G _{M(B)}	-		1	3		mA/mV

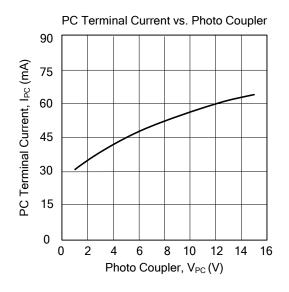
Notes: 1. When the positive input at I_{CTRL} is lower than -151mV, and the voltage is decreased by 1mV, the sinking current at the output OUT will be increased by 8mA.

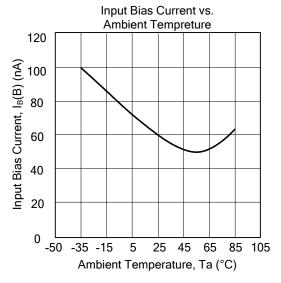
- 2. The internal voltage reference is set at 1.240V (bandgap reference). The voltage control loop precision takes into account the cumulative effects of the internal voltage reference deviation as well as the input offset voltage of the trans-conductance operational amplifier.
- 3. If the voltage on B +Input (the positive input of the amplifier) is higher than the negative amplifier input $(V_{REF(B)} = 1.240V)$, and it is increased by 1mV, the sinking current at the output OUT will be increased by 3mA.

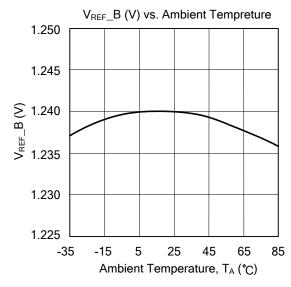

^{2.} Mount on a glass epoxy circuit board of 30x30mm Pad dimension of 50mm²

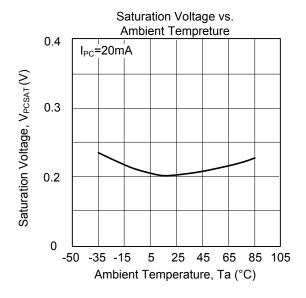

■ TYPICAL APPLICATION CIRCUIT




In the above application schematic, the UTC **UM607** is used on the secondary side of a flyback adapter (or battery charger) to provide an accurate control of voltage and current. The above feedback loop is made with an optocoupler.


■ TYPICAL CHARACTERISTICS





■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.