UNA06R180M

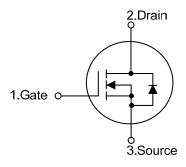
Advance

POWER MOSFET

TO-220

35A, 60V N-CHANNEL **ENHANCEMENT MODE** TRENCH POWER MOSFET

DESCRIPTION


The UTC UNA06R180M is an N-channel Power MOSFET, it uses UTC's advanced technology to provide the customers with high switching speed and low on-state resistance, etc.

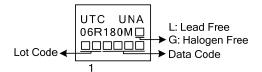
The UTC UNA06R180M is suitable for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED, etc.

FEATURES

- * $R_{DS(ON)}$ < 18m Ω @ V_{GS} =10V, I_{D} =30A
- * High power and current handling capability
- * High speed switching
- * Low gate charge

SYMBOL

ORDERING INFORMATION


Ordering	Dookogo	Pin Assignment			Dooking		
Lead Free	Halogen Free	Package	1	2	3	Packing	
UNA06R180ML-TA3-T	UNA06R180MG-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source UNA06R180ML-TA3-R

www.unisonic.com.tw 1 of 7

MARKING

■ **ABSOLUTE MAXIMUM RATING** (T_A =25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		$V_{ extsf{DSS}}$	60	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current	Continuous (Note 2)	T _C =25°C	I _D	35	Α
		T _C =100°C		27	Α
		T _A =25°C		7	Α
		T _A =70°C		6	Α
	Pulsed(Note 3)		I _{DM}	120	Α
Avalanche Current	Avalanche Current		I _{AS}	26	Α
Avalanche Energy (Note4)		E _{AS}	101	mJ	
Power Dissipation		T _C =25°C	P _D	100	W
		T _C =100°C		50	W
		T _A =25°C		2.1	W
		T _A =70°C		1.3	W
Junction Temperature		TJ	150	°C	
Storage Temperature Range		T _{STG}	-55~+150	°C	

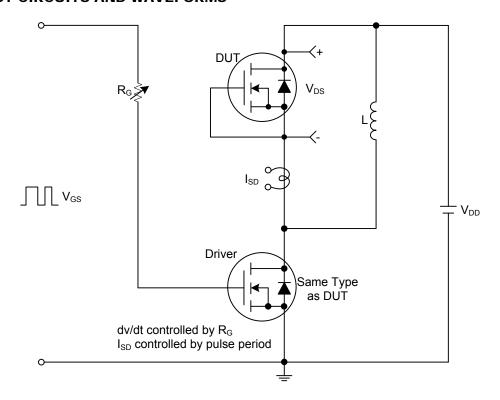
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Current limited by bond wire.
- 3. Repetitive rating: Pulse width limited by maximum junction temperature.
- 4. L=0.3mH, I_{AS} =26A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 5. $I_{SD} \le 26A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 175$ °C

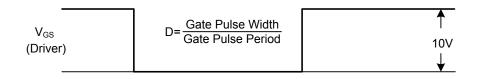
■ THERMAL RESISTANCES CHARACTERISTICS

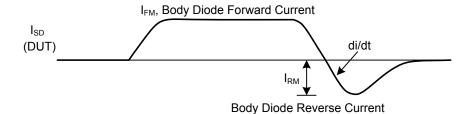
PARAMETER		SYMBOL	RATINGS	UNIT
Junction to ambient	steady state	θ_{JA}	60	°C/W
Junction to Case	steady state	θ_{JC}	1.5	°C/W

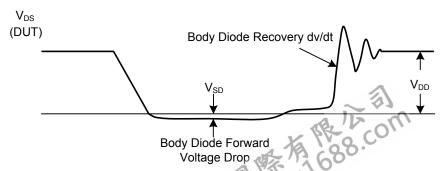
■ **ELECTRICAL CHARACTERISTICS** (T_A =25°C, unless otherwise specified)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV_{DSS}	$I_D=250\mu A, V_{GS}=0V$	60			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	μΑ
			V _{DS} =60V, T _J =55°C			5	μΑ
Gate-Source Leakage Current	orward	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
	leverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0		3.0	V
Static Drain-Source On-State R (Note 1)	esistance	R _{DS(ON)}	V _{GS} =10V, I _D =30A		15	18	mΩ
Forward Transconductance(Note 1	Forward Transconductance(Note 1)		V _{DD} =5V, I _D =30A		50		S
DYNAMIC PARAMETERS		g fs					
Input Capacitance	nput Capacitance				1840		pF
Output Capacitance Reverse Transfer Capacitance		Coss	V _{GS} =0V, V _{DS} =30V, f=1.0MHz		185		pF
		C_{RSS}			80		pF
Gate resistance		Rg	V _{GS} =0V, V _{DS} =0V, f=1MHz		3	5	Ω
SWITCHING PARAMETERS							
Total Gate Charge		Q_G	\\ -E0\\ \\ -10\\ -1.3A		27.5		nC
Gate to Source Charge		Q_GS	V _{DS} =50V, V _{GS} =10V, I _D =1.3A		10		nC
Gate to Drain Charge		Q_GD	(Note 1, 2)		6.5		nC
Turn-on Delay Time		$t_{D(ON)}$			12		ns
Rise Time	-		$V_{DD} = 30V$, $I_D = 0.5A$, $R_G = 25\Omega$		5.2		ns
Turn-off Delay Time			(Note 1, 2)		38		ns
Fall-Time		t _F			27		ns
SOURCE- DRAIN DIODE RATING	S AND C	HARACTER	STICS				
Maximum Body-Diode Continuous Current		Is	Integral p-n diode in MOSFET			35	Α
Maximum Body-Diode Pulsed Curr	ent	I _{SM}	integral p-11 diode in WOSFET			140	Α
Drain-Source Diode Forward Volta	ge	V_{SD}	I _S =1A, V _{GS} =0V	0.75		1.0	V
Body Diode Reverse Recovery Tin	пе	t_{RR}	 - s=30A, dls/dt=100A/µs		35		ns
Body Diode Reverse Recovery Charge		Q_{RR}	15-50Δ, αιζ/αι-100Α/μ5		47		nC

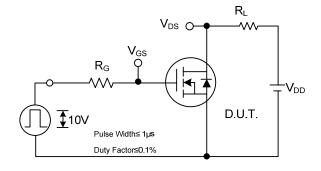
Notes: 1. Pulse test: pulse width ≤ 300us, duty cycle ≤ 2%.

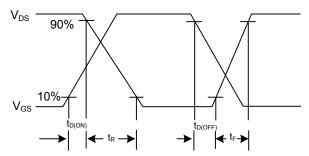



^{2.} Essentially independent of operating temperature.


■ TEST CIRCUITS AND WAVEFORMS

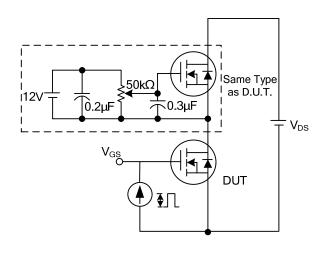
Peak Diode Recovery dv/dt Test Circuit

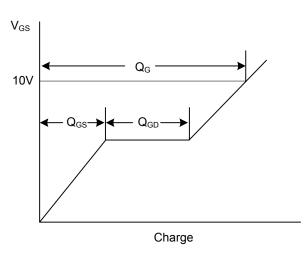




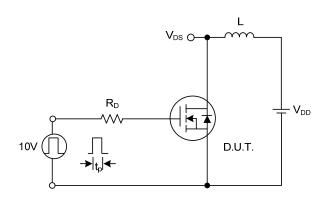
Peak Diode Recovery dv/dt Test Circuit and Waveforms

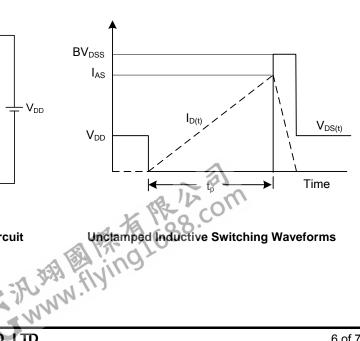
Peak Diode Recovery dv/dt Waveforms


TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

