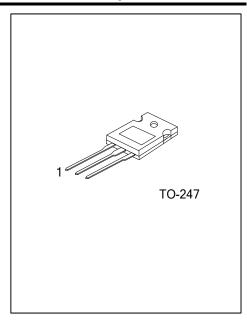
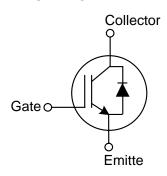
UNISONIC TECHNOLOGIES CO., LTD

UPG15N120

Insulated Gate Bipolar Transistor

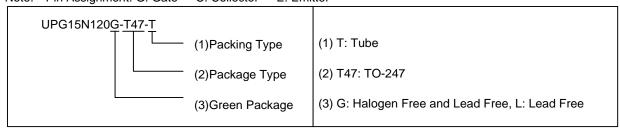

1200V NPT PLANAR IGBT

■ DESCRIPTION


The UTC **UPG15N120** is a 1200V NPT Planar Insulated Gate Bipolar Transistor. it uses UTC's advanced technology to offers superior conduction and switching performance, high avalanche ruggedness and easy parallel operation.

■ FEATURES

- * High speed switching
- * High input impedance
- * Low saturation voltage: V_{CE(SAT)} =2.4V @ I_C=15A


■ SYMBOL

ORDERING INFORMATION

Ordering Number		Deelsene	Pin Assignment			Do okin s	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UPG15N120L-T47-T	UPG15N120G-T47-T	TO-247	G	С	Е	Tube	

Note: Pin Assignment: G: Gate C: Collector E: Emitter

■ MARKING

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS

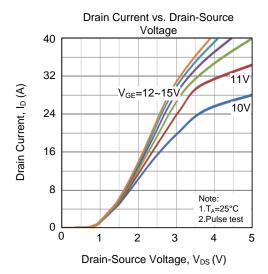
PARAMETER		SYMBOL	RATINGS	UNIT	
Collector-Emitter Voltage		V_{CES}	1200	V	
Gate-Emitter Voltage		V_{GES}	±20	V	
Continuous Collector Current	T _C =25°C	Ic	30	Α	
	T _C =100°C		15	Α	
Collector Current Pulsed (Note 1)		I _{CM}	60	Α	
Power Dissipation		P_{D}	300	W	
Operating Junction Temperature		TJ	-55 ~ + 150	°C	
Storage Temperature Range		T _{STG}	-55 ~ + 150	°C	

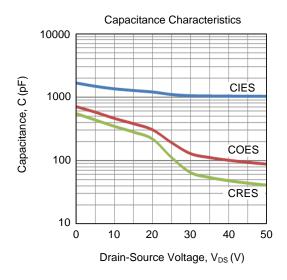
Notes: 1. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Absolute maximum ratings are those values beyond which the device could be permanently damaged.

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	SYMBOL RATINGS	
Junction to Case	θ_{JC}	0.42	°C/W


■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise noted)


PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT	
Off Characteristics							
Collector-Emitter Breakdown Voltage	B _{VCES}	$I_C=250\mu A, V_{GE}=0V$	1200			V	
Collector Cut-Off Current	I _{CES}	V _{CE} =V _{CES} , V _{GE} =0V			250	μΑ	
G-E Leakage Current	I_{GES}	V _{GE} =V _{GES} , V _{CE} = 0V			±250	nA	
On Characteristics							
Gate to Emitter Threshold Voltage	$V_{GE(TH)}$	$I_C=90\mu A, V_{CE}=V_{GE}$	4.0		6.0	V	
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I _C =15A, V _{GE} =15V		2.0	2.4	V	
Dynamic Characteristics							
Input Capacitance	CIES			1090		рF	
Output Capacitance	C _{OES}	V _{CE} =25V, V _{GE} =0V, f=1MHz		190		рF	
Reverse Transfer Capacitance	C _{RES}			110		рF	
Switching Characteristics							
Total Gate Charge	Q_{G}	V _{CE} =100V, V _{GE} =15V, I _C =15A		95		nC	
Gate-Emitter Charge	Q_GE	\\ 100\\ \\ 15\\ \ 15\\		20		nC	
Gate-Collector Charge	Q_GC	V _{CE} =100V, V _{GE} =15V, I _C =15A		44		nC	
Turn-On Delay Time	t _{D(ON)}			50		ns	
Rise Time	t_R	V _{CC} =50V, V _{GE} =15V, I _C =15A,		155		ns	
Turn-Off Delay Time	t _{D(OFF)}	$R_G=10\Omega$,		210		ns	
Fall Time	t_{F}			85		ns	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS							
Forward Voltage Drop	V_{FM}	I _F =15A		2.2		V	
Reverse Recovery Time	t _{rr}	1 15A dl/dt=200A/uS		116		ns	
Reverse Recovery Charge	Q_{rr}	I _F =15A, dI/dt=200A/μS		370		nC	

^{2.} Pulse width limited by maximum junction temperature.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.