

UNISONIC TECHNOLOGIES CO., LTD

UPSL103

Preliminary

LINEAR INTEGRATED CIRCUIT

HIGH POWER FACTOR & ACCURACY CONSTANT CURRENT LED DRIVER

DESCRIPTION

The UTC **UPSL103** is a highly-integrated, low startup current, average current mode, one cycle control PFC and fixed switching frequency PWM controller. These functions enable the LED driver to easily meet the accuracy average LED current and high power factor requirements.

The UTC **UPSL103** also features a 45kHz fixed frequency oscillator, an internal 200mV precision reference, and a PWM comparator with latching logic. The accurate output LED current is achieved by an averaging current feedback loop and the LED current dimming can be easily controlled via the DIM pin. The UTC **UPSL103** also has multiple features to protect the controller from fault conditions, including Under Voltage Lockout (UVLO), Over Current Protection (OCP) and Over Voltage Protection (OVP). Additionally, to ensure the system reliability, the UTC **UPSL103** is built with the thermal protection function.

The UTC **UPSL103** improves the performance and reduces the cost of the LED driver.

FEATURES

- * High power factor by one cycle control
- * Accuracy and programmable constant current
- * Low BOM cost
- * Dimmable LED current by DIM
- * Average current / fixed frequency control
- * Gate output voltage clamp
- * LED Open Protection
- * LED Short Protection
- * Over Current Protection
- * Built-in thermal protection

ORDERING INFORMATION

Ordering Number	Package	Packing				
UPSL103G-AG6-R	SOT-26	Tape Reel				
UPSL103G-AG6-R (1)Packing Type (2)Package Type (3)Green Package (3) G: Halogen Free and Lead Free						
CWWW						

UPSL103

MARKING

■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION	
1	Vcc	Power supply pin of the chip.	
2	GND	Ground pin of the chip.	
3	OUT	Gate driver for external MOSFET switch	
4	DIM	Dimming control pin by input a DC voltage	
5	COMP	PWM loop compensation node	
6	CS	Current sense pin, Connect to sense the MOSFET current	

UNISONIC TECHNOLOGIES CO., LTD

UPSL103

Preliminary

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	30	V
DIM, COMP, CS		-0.3~7	V
OUT		15	V
Power Dissipation (at Ambient Temperature =85°C)	PD	250	mW
ESD Voltage Protection, Human Body Model		2	KV
ESD Voltage Protection, Machine Model		200	V
Junction Temperature	TJ	150	°C
Operating Ambient Temperature	T _{OPR}	-20~85	°C
Storage Temperature	T _{STG}	-65~150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (V_{CC}=15.0V & T_A=+25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Startup Current	I _{ST}	V _{CC} =UVLO on - 1V		4	15	μA	
Operating Current	Icc	with 1nF load on OUT pin, V _{COMP} =2.5V		2	3	mA	
Operating Current	I _{QC}	with 1nF load on OUT pin, Protection Tripped (OCP, OVP, SCP, OTP)		1.2	1.5	mA	
UVLO(off)	V _{MIN}		7	8	9	V	
UVLO(on)	V _{ST}		14	15	16	V	
OVP Level on VCC Pin	V _{OVP}		26.5	28	29.5	V	
OVP De-Bounce Time				40		μs	
Feedback Reference Voltage	V_{FB}		0.196	0.200	0.204	V	
Tran-Conductance				120		μS	
Output Sink Current	I _{SINK}			12		μA	
Output Source Current	ISOURCE			12		μA	
Input Over Voltage Protection	V _{OCP}		0.7	0.80	0.9	V	
Open Loop Voltage, CS Pin Open	V _{CS}			5		V	
Leading-Edge Blanking Time	T _{LEB}			410		nS	
Delay to Output	T_{Delay}			100	220	nS	
Switching Frequency	Fosc		42	45	48	KHz	
Maximum Duty	D _{MAX}		90			%	
Frequency Jitter Range				+/-4		%	
Temp. Stability		-40°C~ 125°C			6	%	
Voltage Stability		V _{CC} =11V ~ 25V			1	%	
Rising Time	T _R	Load Capacitance=1000pF		160	320	nS	
Falling Time	T _F	Load Capacitance=1000pF		80	160	nS	
VGATE-Clamp	V_{Clamp}	V _{CC} =25V		13.5	15	V	
Saturation Threshold Voltage			3.0			V	
Linear Dimming Range			0.3		3.0	V	
LED Current off Threshold Voltage			~ ?		0.5	V	
Current Source		102	270	300	330	μA	
OTP Trip Point	T_{SD}	K W	0,00	150		°C	
OTP Release Point	T _{ST}	12 M 60		130		°C	
OTP Threshold Level	∆T	EST 131 OT		20		°C	
OTP De-Bounce Time		Real Real		80		μS	
T C WWW.IT							

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

