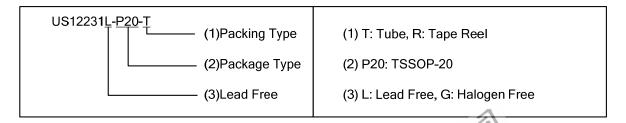

US12231 Preliminary CMOS IC

EXPRESSCARD™ POWER INTERFACE SWITCH

DESCRIPTION

The UTC **US12231** ExpressCardTM power interface switches are designed to meet the ExpressCardTM specification. The UTC **US12231** distribute 3.3V, AUX, and 1.5V to the single-slot ExpressCard|34 or ExpressCard|54 sockets. Each voltage rail is protected with integrated current-limiting circuitry, other functions include thermal protection circuit turns off switches to prevent device from damage when heavy overloads or short circuits,

The UTC **US12231** can use in notebook computers, desktop computers, PDAs, and digital cameras.

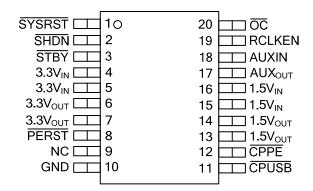


■ FEATURES

- * Meets the ExpressCard[™] standard (ExpressCard|34 or ExpressCard|54)
- * Compliant with the ExpressCardTM compliance checklists
- * Fully satisfies the ExpressCardTM implementation guidelines
- * Supports systems with WAKE function
- * TTL-Logic compatible inputs
- * Short circuit and thermal protection
- * -40°C ~ 85°C ambient operating temperature range

ORDERING INFORMATION

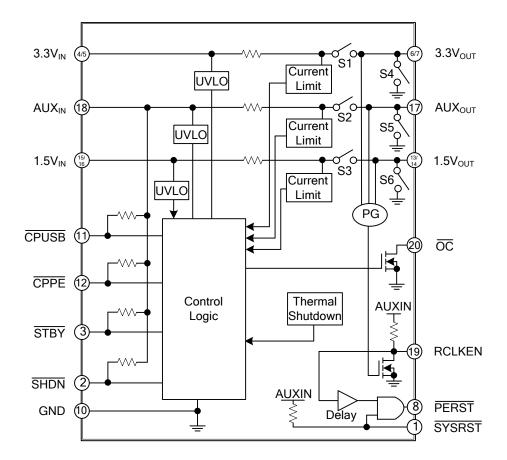
Ordering	Number	Doolsono	Dooking
Lead Free	Halogen Free	Package	Packing
US12231L-P20-T	US12231G-P20-T	TSSOP-20	Tube
US12231L-P20-R	US12231G-P20-R	TSSOP-20	Tape Reel



ExpressCard is a trademark of Personal Computer Memory Card International Association.

MARKING INFORMATION

PACKAGE	MARKING
TSSOP-20	Page 18 17 18 15 14 13 12 11


PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	I/O	DESCRIPTION						
1	SYSRST	I	System Reset input – active low, logic level signal. Internally pulled up to AUXIN.						
2	SHDN	I	Shutdown input – active low, logic level signal. Internally pulled up to AUXIN.						
3	STBY	I	Standby input – active low, logic level signal. Internally pulled up to AUXIN.						
4, 5	3.3V _{IN}	I	3.3-V input for 3.3VOUT						
6, 7	$3.3V_{OUT}$	0	Switched output that delivers 0 V, 3.3 V or high impedance to card						
8	PERST	0	A logic level power good to slot 0 (with delay)						
9	NC		No connection						
10	GND		Ground						
11	CPUSB	I	Card Present input for USB cards. Internally pulled up to AUXIN.						
12	CPPE	I	Card Present input for PCI Expresscards [™] . Internally pulled up to AUXIN						
13, 14	1.5V _{OUT}	0	Switched output that delivers 0 V, 1.5 V or high impedance to card						
15,16	1.5V _{IN}	I	1.5-V input for 1.5VOUT						
17	AUX _{OUT}	0	Switched output that delivers 0 V, AUX or high impedance to card						
18	AUX _{IN}	I	AUX input for AUXOUT and chip power						
19	RCLKEN	I/O	Reference Clock Enable signal. As an output, a logic level power good to host for slot 0 (no delay – open drain). As an input, if kept inactive (low) by the host, prevents PERST from being de-asserted. Internally pulled up to AUXIN.						
20	oc	0	Overcurrent status output for slot 0 (open drain)						
	20 OC O Overcurrent status output for slot 0 (open drain) UNISONIC TECHNOLOGIES CO., LTD 2 of 15								
ITT			LOGIES CO., LTD 2 of 15						
	www.unison	ic.com.tv	<u>V</u> QW-R502-A82.a						

BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (Over operating free-air temperature range (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	RATINGS	UNIT	
		1.5V _{IN}	-0.3~6		
Input Voltage Range For Card Power	V_{IN}	3.3V _{IN}	-0.3~6	V	
		AUX _{IN}	-0.3~6		
Logic Input/Output Voltage			-0.3~6	V	
		1.5V _{IN}	-0.3~6		
Output Voltage Range	V_{OUT}	3.3V _{IN}	-0.3~6	V	
		AUX _{IN}	-0.3~6		
Continuous Total Power Dissipation			See dissipation ra	ting table	
		1.5V _{IN}	Internally limited		
Output Current	I _{OUT}	3.3V _{IN}	Internally limited		
		AUX _{IN}	Internally limited		
OC Sink Current			10	mA	
PERST Sink/Source Current			10	mA	
Operating Virtual Junction Temperature Range	TJ		-40~+120	°C	
Storage Temperature Range	T _{STG}		-55~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **DISSIPATION RATINGS** (Thermal Resistance=°C/W)

PARAMETER	SYMBOL	RATINGS	UNIT
POWER RATING (T _A ≤25°C)		704.2	mW

Note: These devices are mounted on a JEDEC low-k board (2-oz. traces on surface), (The table is assuming that the maximum junction temperature is 120°C).

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		1.5V _{IN}	1.5V _{IN} is only required for its respective functions	1.35		1.65	
Input Voltage	V _{IN}	3.3V _{IN}	3.3V _{IN} is only required for its respective functions	3		3.6	V
		AUX _{IN}	AUX _{IN} is required for all circuit operations	3		3.6	
		1.5V _{OUT}		0		650	mA
Continuous Output Current	I _{OUT}	$3.3V_{OUT}$		0		1.3	Α
		AUX _{OUT}		0		275	mA
Operating Virtual Junction Temperature	TJ			-40		120	°C

■ ELECTRICAL CHARACTERISTICS

 $T_{J}=25^{\circ}C,\ V_{I(3.3VIN)}=V_{I(AUXIN)}=3.3V,\ V_{I(1.5VIN)}=1.5V,\ V_{I(/SHDNx)},\ V_{I(/STBYx)}=3.3V,\ V_{I(/CPPEx)}=V_{I(/CPUSBx)}=0V,\ V_{I(/SYSRST)}=3.3V,\ \overline{OCx}\ and\ RCLKENx\ and\ \overline{PERSTx}\ are\ open,\ all\ voltage\ outputs\ unloaded\ (unless\ otherwise\ noted)$

1.5V _m -1.5V _{out} 1.5V _m 1.5V _{out} 2.3V _m -3.3V _{out} 3.3V _m -3.3V _{out} 2.3V _m -3.3V _{out} 2.3V _m -3.3V _{out} 2.3V _m -3.3V _{out} 2.5V	PARAMET	reb		SYMBOL	TEST CONDITIONS	MIN	TYP	MAY	LINIT
1.5V _{ts} - 1.5V _{tot} 1.5V _{ts} - 1.5V _{tot} 1.5V _{tot} 2.3 N _{ts} - 3.3V _{tot} 2.3 N _{ts} - 3.3V _{tot} 2.3 N _{ts} - 3.3 V _{tot} 2.5 N _{tot} 2	FARAIVIE			O I WIBOL		IVIIIN		IVIAA	CIVIT
Power Switch Resistance 3.3 V _{IIV} - 3.3 V _{IIV} AUX _{IIV} -		1.5V _{IN} ~1.5V _O	UT		- · ·		40	70	mΩ
T_=100°C, l=1300mA each T_=25°C T_=100°C, l=1300mA each T_=25°C T_=100°C, l=275mA each T_=25°C T_=25°C T_=25°C T_=120°C, l=275mA each T_=25°C							45	70	
AUX _{NX} -AUX _{CUT} T _{J=2} 5°C, =275mA each 120 mΩ 200 mΩ 2	Power Switch Resistance	3.3V _{IN} ~3.3V _O	UT	R _{DS}	,		40	69	mΩ
AUX _m -AUX _{cour} T ₁ =100°C, I=275mA each 1.50					· · · · · · · · · · · · · · · · · · ·		120	00	
Discharge Resistance On 3.3V/1.5V/AUX Outputs Ross FETT Versions = 0.00, I deside suppo = 1 mA 1.00 0.67 1 1.3 A		AUX _{IN} ~AUX _O	UT				120	200	mΩ
Short	D: 1 D : 1 0 000	//4 5> //4 1 1> / 0		_	· ·	400			
Short	Discharge Resistance On 3.3\	//1.5V/AUX O	utputs	R _(DIS_FET)	V _{I(/SHDNx)} =UV, I _(discharge) =1mA	100		500	Ω
Circuit Output Current (Note Value 2.3 Vour Value 2.5 A AUX _{OUT} Value 2.5 A AUX _{OUT} Value 2.75 450 600 mA AUX _{OUT} 7.3 cc Condition 1.55 165 165 °C Condition 1.55 165 °C Condition 1.55 165 °C °C Condition 1.55 °C Condition 1.55 °C °C Condition 1.55 °C Condition	Short		1.5V _{OUT}			0.67	1	1.3	Α
Trip Point, T.j. T.j. Condition T.j. Con	-Circuit Output Current (Note	· -	3.3V _{OUT}	I _{OS}	,, , ,	1.35	2	2.5	Α
Trip Point, T _J Condition To The 150 To The 151 Thysteresis ΔT ΔT ΔT ΔT ΔT ΔT ΔT Δ	,		AUX _{OUT}			275	450	600	mA
T _{J OC} Overcurrent condition 120 130	Thermal	Trip Point, T.		TJ		155	165		°C
Hysteresis	Shutdown	, , ,		T _{J OC}	Overcurrent condition	120	130		
Current Threshold Within 1.1 Times Of Final Current Limit, T, = 25°C Vo(3.3NOLT) with 100-mΩ short 43 100 140		Hysteresis					10		°C
Current Threshold Within 1.1Times Of Final Current Limit, T ₂ =25°C V _{O(AUXOUT)} with 100-mΩ short 100 140 μs		,	o The 1st		V _{O(3.3VOUT)} with 100-mΩ short			100	
1.1 Times Of Final Current Limit, T,=25°C Vo(AUXOUT) with 100-mΩ short 38 100 1.5 Vin	Current						100	140	
Operation Current Normal Operation 3.3V _{IN} AUX _{IN} I _I J (-40, 120°C) (does not include CPPEx and CPUSBx logic pullup currents) 10 15 μA Total Input Quiescent Current Current 1.5V _{IN} AUX _{IN} 1.5V _{IN} AUX _{IN} Outputs are unloaded, T _J (-40, 120°C) (include CPPEx and CPUSBx logic pullup currents) 10 15 μA Total Input Quiescent Current Shutdown Mode 3.3V _{IN} AUX _{IN} I _I GPUSBx logic pullup currents) 10 15 μA Total Input Quiescent Current 1.5V _{IN} AUX _{IN} I _I GPUSBx logic pullup currents) 10 15 μA Total Input Quiescent Current 1.5V _{IN} AUX _{IN} I _I GPUSBx logic pullup currents) 0.5 10 0.5	-Limit Response Time						38	100	μs
Current Operation Operation Operation Operation Operation AUX _{IN} In In In In In In In I					Outputs are unloaded,		2.5	10	
AUX		l 3.	3.3V _{IN}	I ₁	·		10	15	μΑ
Total Input Quiescent Current Operation Operati	Current	l .	AUX _{IN}				85	150	
Total Input Quiescent Current Operation Operati			1.5V _{IN}		Outputs are unloaded,		2.5	10	
Total Input Quiescent Current AUX _{IN} 1.5V _{IN} 1.5V _{IN} AUX _{IN} AUX _{IN} AUX _{IN} AUX _{IN} Insurance AUX _{IN} AUX _{IN} AUX _{IN} AUX _{IN} AUX _{IN} Insurance AUX _{IN} AUX _{IN} AUX _{IN} Insurance AUX _{IN} AUX _{IN} AUX _{IN} AUX _{IN} Insurance AUX _{IN} A							10	15	uА
Total Input Quiescent Current 1.5V _{IN}									"
Shutdown Mode $\begin{vmatrix} 3.3V_{IN} \\ AUX_{IN} \end{vmatrix}$ $\begin{vmatrix} (discharge FETs are on) (include CPDSx logic pullup current) T_J \\ (-40, 120°C) \end{vmatrix}$ $\begin{vmatrix} 1.5V_{IN} \\ AUX_{IN} \end{vmatrix}$ $\begin{vmatrix} 1.5V_{IN} \\ T_J = 120°C, includes RCLKEN pullup current \end{vmatrix}$ $\begin{vmatrix} 0.1 \\ 50 \\ 20 \\ 50 \end{vmatrix}$ $\begin{vmatrix} 1.5V_{IN} \\ T_J = 25°C \\ T_J = 120°C \end{vmatrix}$ $\begin{vmatrix} 1.5V_{IN} \\ T_J = 25°C \\ T_J = 25°C \end{vmatrix}$ $\begin{vmatrix} 1.5V_{IN} \\ T_J = 25°C \\ T_J = 25°C \end{vmatrix}$ $\begin{vmatrix} 1.5V_{IN} \\ T_J = 25°C \\ T_J = 25°C \end{vmatrix}$ $\begin{vmatrix} 1.5V_{IN} \\ T_J = 25°C \\ T_J = 25°C \end{vmatrix}$ $\begin{vmatrix} 1.5V_{IN} \\ T_J = 25°C \\ T_J = 25°C \end{vmatrix}$ $\begin{vmatrix} 1.5V_{IN} \\ T_J = 25°C \end{vmatrix}$	Total Input Quiescent Current			l _i					
Forward Leakage Current $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·		3.3V _{IN}	·	CPPEx and CPUSBx logic pullup		3.5	10	μA
Forward Leakage Current $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			AUX _{IN}		, , , , , , , , , , , , , , , , , , , ,		144	270	
Forward Leakage Current $3.3V_{IN}$ AUX_{IN} $I_{lkg(FWD)}$ $I_$			1.5V _{IN}				0.1	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Forward Leakage Current		3.3V _{IN}	I _{lkg(FWD)}	current measured at input pins,		0.1	50	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			AUX _{IN}				20	50	
Reverse Leakage Current $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T _J =25°C			. 3		0.1	10	
Reverse Leakage Current $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.5V _{IN}						μΑ
Reverse Leakage Current $T_J=120^{\circ}C$ $3.3V_{IN}$ $T_{J=25^{\circ}C}$ $T_{J=25^{$		T ₁ =25°C		1			0.1		
$T_J=25^{\circ}C$ pins going in) 0.1 10	Reverse Leakage Current		3.3V _{IN}	I _{lkg(RVS)}					μΑ
Δ117		T _J =25°C					0.1		
								50	μΑ

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LOGIC SECTION (SYSRST, SI	HDNx , STBYx	, PERSTx , R	CLKENx, OCx, CPUSBx, CPPE	x)		<u>-</u> .	-
	Input	$I_{\overline{(SYSRST)}}$	SYSRST =3.6V, sinking		0	1	μΑ
Logic Input Supply Current	Input	I _(SYSRST)	SYSRST =0V, sourcing	10	0	1 30	μA
		ı	SHDNx =3.6V, sinking		0	1	
	Input	(SHDNx)	SHDNx =0V, sourcing	10		30	μA
			STBYx =3.6V, sinking		0	1	
	Input	I _(STBYx)	STBYx =0V, sourcing	10		30	μΑ
	Input	I _(RCLKENx)	RCLKENx=0V, sourcing	10		30	μΑ
		I	CPUSB or CPPE =0V, sinking		0	1	
	Inputs	Or I	CPUSB or CPPE =3.6V, sourcing	10		30	μA
Lasta Lasta (Nollassa	High Level	V _{IH}		2			.,
Logic Input Voltage	Low Level	V _{IL}				8.0	V
RCLEN Output Low Voltage	Output	V _{OL(RCLEN)}	I _{O(RCLKEN)} =60μA			0.4	V
PERST Assertion Threshold Of	Output	$V_{PG(3.3VIN)}$	3.3V _{OUT} falling	2.7		3	
Voltage (PERST Asserted When	n Any Output	$V_{PG(AUXIN)}$	AUX _{OUT} falling	2.7		3	V
Voltage Falls Below The Thresh		V _{PG(1.5VIN)}	1.5V _{OUT} falling	1.2		1.35	
PERST Assertion Delay From C	utput Voltage	t _{FD(PERST)}	3.3V _{OUT} , AUX _{OUT} , or 1.5V _{OUT} falling			500	ns
PERST De-assertion Delay Froi Voltage	n Output	t _{RD(PERST)}	3.3V _{OUT} , AUXOUT, and 1.5V _{OUT} rising within tolerance	4	10	20	ms
PERST Assertion Delay From S	YSRST	t _{FD2(PERST)}	Max time from SYSRST asserted or de-asserted			500	ns
PERST Minimum Pulse Width		$t_{\overline{W(\overline{\text{PERST}})}}$	3.3V _{OUT} , AUX _{OUT} , or 1.5V _{OUT} falling out of tolerance or triggered by SYSRST	100	250		μs
PERST Output Low Voltage		$V_{OL}\overline{_{(PERST)}}$				0.4	٧
PERST Output High Voltage		$V_{OH(\overline{PERST})}$	I _{O(PERST)} =500μA	2.4			٧
OC Output Low Voltage		$V_{OL\overline{(OC)}}$	I _{O(/OC)} =2mA			0.4	V
OC Leakage Current		$I_{IKG}\overline{(OC)}$	V _{O(/OC)} =3.6V			1	μΑ
OC Deglitch		$t_{D\overline{(OC)}}$	Falling into or out of an overcurrent condition	6		20	mS
UNDERVOLTAGE LOCKOUT (UVLO)		1		1	1	1
3.3V _{IN} UVLO		V _{UVLO(3.3VIN)}	3.3V _{IN} level, below which 3.3V _{IN} and 1.5V _{IN} switches are off	2.6		2.9	V
1.5V _{IN} UVLO		V _{UVLO(1.5VIN)}	1.5V _{IN} level, below which 3.3V _{IN} and 1.5V _{IN} switches are off	1		1.25	
AUX _{IN} UVLO		V _{UVLO(AUXIN)}	AUX _{IN} level, below which all switches are off	2.6		2.9	
UVLO Hysteresis		ΔV _{UVLO}	81 1× 170		100		mV

Note: Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately. ELECTRICAL CHARACTERISTICS(Cont.)

SWITCHING CHARACTERISTICS

 $T_{J} = 25^{\circ}C, \ V_{I(3.3VIN)} = V_{I(AUXIN)} = 3.3V, \ V_{I(1.5VIN)} = 1.5V, \ V_{I(/SHDNx)}, \ V_{I(/STBYx)} = 3.3V, \ V_{I(/CPPEx)} = V_{I(/CPUSBx)} = 0V, \ V_{I(/SYSRST)} = 3.3V, \ V_{I(/SYSST)} = 3.3V, \ V_{I(/S$ OCx and RCLKENx and PERSTx are open, all voltage outputs unloaded (unless otherwise noted)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	3.3V _{IN} to 3.3V _{OUT}		$C_{L(3.3VOUT)}=0.1\mu F$, $I_{O(3.3VOUT)}=0A$	0.1		3		
	AUX _{IN} to AUX _{OUT}		$C_{L(AUXOUT)}=0.1\mu F$, $I_{O(AUXOUT)}=0A$	0.1		3		
	1.5V _{IN} to 1.5V _{OUT}	4	$C_{L(1.5VOUT)}=0.1\mu F$, $I_{O(1.5VOUT)}=0A$	0.1		3		
Output Rise Times	3.3V _{IN} to 3.3V _{OUT}	t _r	$C_{L(3.3VOUT)}=100\mu F, R_L=V_{I(3.3VIN)}/1A$	0.1		6	ms	
	AUX _{IN} to AUX _{OUT}		$C_{L(AUXOUT)}$ =100 μ F, R_L = $V_{I(AUXIN)}$ /0.250A	0.1		6		
	1.5V _{IN} to 1.5V _{OUT}		$C_{L(1.5VOUT)}$ =100 μ F, R_L = $V_{I(1.5VIN)}$ /0.500A	0.1		6		
	3.3V _{IN} to 3.3V _{OUT}		$C_{L(3.3VOUT)}=0.1\mu F$, $I_{O(3.3VOUT)}=0A$	10		150		
Output Fall Times	AUX _{IN} to VAUX _{OUT}		C _{L(AUXOUT)} =0.1µF, I _{O(AUXOUT)} =0A	10		150	μs	
When Card Removed	1.5V _{IN} to 1.5V _{OUT}	t _f	$C_{L(1.5VOUT)}=0.1\mu F$, $I_{O(1.5VOUT)}=0A$	10		150		
(Both CPUSB And	3.3V _{IN} to 3.3V _{OUT}	ιf	C _{L(3.3VOUT)} =20µF, I _{O(3.3VOUT)} =0A	2		30		
CPPE De-asserted)	AUX _{IN} to VAUX _{OUT}		C _{L(AUXOUT)} =20μF, I _{O(AUXOUT)} =0A	2		30	ms	
	1.5V _{IN} to 1.5V _{OUT}		$C_{L(1.5VOUT)} = 20\mu F$, $I_{O(1.5VOUT)} = 0A$	2		30		
	3.3V _{IN} to 3.3V _{OUT}		C _{L(3.3VOUT)} =0.1µF, I _{O(3.3VOUT)} =0A	10		150		
Output Fall Times	AUX _{IN} to VAUX _{OUT}		$C_{L(AUXOUT)}=0.1\mu F$, $I_{O(AUXOUT)}=0A$	10		150	μs	
When SHDN Asserted	1.5V _{IN} to 1.5V _{OUT}	t _f	$C_{L(1.5VOUT)}=0.1\mu F, I_{O(1.5VOUT)}=0A$	10		150		
	3.3V _{IN} to 3.3V _{OUT}	Lf	$C_{L(3.3VOUT)}=100\mu F, R_L=V_{I(3.3VIN)}/1A$	0.1		5		
(Card Is Present)	AUX _{IN} to VAUX _{OUT}		$C_{L(AUXOUT)}$ =100 μ F, R_L = $V_{I(AUXIN)}$ /0.250A	0.1		5	ms	
	1.5V _{IN} to 1.5V _{OUT}		$C_{L(1.5VOUT)}$ =100 μ F, R_L = $V_{I(1.5VIN)}$ /0.500A	0.1		5		
	3.3VI _N to 3.3V _{OUT}		$C_{L(3.3VOUT)}=0.1\mu F$, $I_{O(3.3VOUT)}=0A$	0.1		1		
	AUX _{IN} to VAUX _{OUT}		$C_{L(AUXOUT)}=0.1\mu F$, $I_{O(AUXOUT)}=0A$	0.05		0.5		
Turn-On Propagation	1.5V _{IN} to 1.5V _{OUT}	4	$C_{L(1.5VOUT)}=0.1\mu F, I_{O(1.5VOUT)}=0A$	0.1		1	ms	
Delay	3.3V _{IN} to 3.3V _{OUT}	t _{pd(on)}	$C_{L(3.3VOUT)}=100\mu F, R_L=V_{I(3.3VIN)}/1A$	0.1		1.5	1115	
	AUX _{IN} to VAUX _{OUT}		$C_{L(AUXOUT)}$ =100 μ F, R_L = $V_{I(AUXIN)}$ /0.250A	0.05		1		
	1.5V _{IN} to 1.5V _{OUT}		$C_{L(1.5VOUT)}$ =100 μ F, R_L = $V_{I(1.5VIN)}$ /0.500A	0.1		1.5		
	3.3V _{IN} to 3.3V _{OUT}		$C_{L(3.3VOUT)}=0.1\mu F$, $I_{O(3.3VOUT)}=0A$	0.1		1.5		
	AUX _{IN} to VAUX _{OUT}		$C_{L(AUXOUT)}=0.1\mu F$, $I_{O(AUXOUT)}=0A$	0.05		0.5		
Turn-Off Propagation	1.5V _{IN} to 1.5V _{OUT}		$C_{L(1.5VOUT)}=0.1\mu F, I_{O(1.5VOUT)}=0A$	0.1		1.5	ms	
Delay	3.3V _{IN} to 3.3V _{OUT}	t _{pd(off)}	$C_{L(3.3VOUT)}$ =100 μ F, R_L = $V_{I(3.3VIN)}$ /1A	0.1		1.5		
	AUX _{IN} to VAUX _{OUT}		$C_{L(AUXOUT)}$ =100 μ F, R_L = $V_{I(AUXIN)}$ /0.250A	0.05		0.5		
	1.5V _{IN} to 1.5V _{OUT}		C _{L(1.5VOUT)} =100µF, R _L =V _{I(1.5VIN)} /0.500A	0.1		1		

■ FUNCTIONAL TRUTH TABLES

Table 1. Truth Table for Voltage Outputs

VOLTAG	AGE INPUTS (Note 1)		LC	LOGIC INPUTS			AGE OUTPU	TS (Note 2)	
AUX _{IN}	3.3V _{IN}	1.5V _{IN}	SHDN	STBY	CP (Note 4)	AUX _{OUT}	3.3V _{OUT}	1.5V _{OUT}	MODE (Note 3)
Off	Х	Х	Х	Х	Х	Off	Off	Off	OFF
On	Х	Х	0	Х	Х	GND	GND	GND	Shutdown
On	Х	Х	1	Х	1	GND	GND	GND	No Card
On	On	On	1	0	0	On	Off	Off	Standby
On	On	On	1	1	0	On	On	On	Card Inserted

- Notes: 1. For input voltages, On means the respective input voltage is higher than its turnon threshold voltage; otherwise, the voltage is Off (for AUX input, Off means the voltage is close to zero volt.)
 - 2. For output voltages, On means the respective power switch is turned on so the input voltage is connected to the output; Off means the power switch and its output discharge FET are both off; GND means the power switch is off but the output discharge FET is on so the voltage on the output is pulled down to 0V.
 - 3. Mode assigns each set of input conditions and respective output voltage results to a different name. These modes are referred to as input conditions in the following Truth Table for Logic Outputs.
 - 4. $\overline{CP} = \overline{CPUSB}$ and \overline{CPPE} -equal to 1 when both \overline{CPUSB} and \overline{CPPE} signals are logic high, or equal to 0 when either \overline{CPUSB} or \overline{CPPE} is low.

Table 2. Truth Table for Logic Outputs

	INPUT CONDITIONS	LOGIC OUTPUTS			
MODE	SYSRST	RCLKEN (Note 1)	PERST	RCLKEN (Note 2)	
OFF					
Shutdown		V	0	0	
No Card	^	^		U	
Standby					
	0	Hi-Z	0	1	
Card Incorted	0	0	0	0	
Card Inserted	1	Hi-Z	1	1	
	1	0	0	0	

Notes: 1. RCLKEN as a logic input in this column. RCLKEN is an I/O pin and it can be driven low externally, left open, or connected to high-impedance terminals, such as the gate of a MOSFET. It must not be driven high externally.

2. RCLKEN as a logic output in this column.

POWER STATES

OFF mode

If AUX_{IN} is not present, then all input-to-output power switches are kept off (OFF mode).

Shutdown mode

If AUX_{IN} is present and \overline{SHDN} is asserted (logic low), then all input-to-output power switches are kept off and the output discharge FETs are turned on (Shutdown mode). If \overline{SHDN} is asserted and then de-asserted, the state on the outputs is restored to the state prior to \overline{SHDN} assertion.

No Card mode

If $3.3V_{IN}$, AUX_{IN} and $1.5V_{IN}$ are present at the input of the power switch and no card is inserted, then all input-to-output power switches are kept off and the output discharge FETs are turned on (No Card mode).

Card Inserted mode

If $3.3V_{IN}$, AUX_{IN} and $1.5V_{IN}$ are present at the input of the power switch prior to a card being inserted, then all input-to-output power switches are turned on once a card-present signal (\overline{CPUSB} and/or \overline{CPPE}) is detected (Card Inserted mode).

Standby mode

If a card is present and all output voltages are being applied, then the STBY is asserted (logic low); the AUX_{OUT} voltage is provided to the card, and the $3.3V_{OUT}$ and $1.5V_{OUT}$ switches are turned off (Standby mode).

If a card is present and all output voltages are being applied, then the $1.5V_{IN}$, or $3.3V_{IN}$ is removed from the input of the power switch; the AUX_{OUT} voltage is provided to the card and the $3.3V_{OUT}$ and $1.5V_{OUT}$ switches are turned off (Standby mode).

If prior to the insertion of a card, the AUX_{IN} is available at the input of the power switch and $3.3V_{IN}$ and/or $1.5V_{IN}$ are not, or if \overline{STBY} is asserted (logic low), then no power is made available to the card (OFF mode). If $1.5V_{IN}$ and $3.3V_{IN}$ are made available at the input of the power switch after the card is inserted and \overline{STBY} is not asserted, all the output voltages are made available to the card (Card Inserted mode).

■ DISCHARGE FETs

The discharge FETs on the outputs are activated whenever the device detects that a card is not present (No Card mode). Activation occurs after the input-to-output power switches are turned off (break before make). The discharge FETs de-activate if either of the card-present lines go active low, unless the SHDN pin is asserted.

The discharge FETs are also activated whenever the \overline{SHDN} input is asserted and stay asserted until \overline{SHDN} is de-asserted.

APPLICATION INFORMATION

Introduction to ExpressCard[™]

An ExpressCard module is an add-in card with a serial interface based on PCI Express and/or Universal Serial Bus (USB) technologies. An ExpressCardTM comes in two form factors defined as ExpressCard|34 or ExpressCard|54. The difference, as defined by the name, is the width of the module, 34mm or 54mm, respectively. Host systems supporting the ExpressCardTM module can support either the ExpressCard|34 or ExpressCard|54 or both.

ExpressCard[™] Power Requirements

Regardless of which ExpressCardTM module is used, the power requirements as defined in the ExpressCardTM Standard apply to both on an individual slot basis. The host system is required to supply 3.3V, 1.5V, and AUX to each of the ExpressCardTM slots. However, the voltage is only applied after an ExpressCardTM is inserted into the slot.

The ExpressCardTM connector has two pins, \overline{CPPE} and \overline{CPUSB} , which are used to signal the host when a card is inserted. If the ExpressCardTM module itself connects the \overline{CPPE} to ground, the logic low level on that signal indicates to the host that a card supporting PCI Express has been inserted. If \overline{CPUSB} is connected to ground, then the ExpressCardTM module supports the USB interface. If both PCI Express and USB are supported by the ExpressCardTM module, then both signals, \overline{CPPE} and \overline{CPUSB} , must be connected to ground.

In addition to the Card Present signals ($\overline{\text{CPPE}}$ and $\overline{\text{CPUSB}}$), the host system determines when to apply power to the ExpressCardTM module based on the state of the system. The state of the system is defined by the state of the 3.3 V, 1.5V, and AUX input voltage rails. For the sake of simplicity, the 3.3V and 1.5V rails are defined as the primary voltage rails as oppose to the auxiliary voltage rail, AUX.

ExpressCard[™] Power Switch Operation

The ExpressCard power switch resides on the host, and its main function is to control when to send power to the ExpressCardTM slot. The ExpressCardTM power switch makes decisions based on the Card Present inputs and on the state of the host system as defined by the primary and auxiliary voltage rails.

The following conditions define the operation of the host power controller:

- 1. When both primary power and auxiliary power at the input of the ExpressCardTM power switch are off, then all power to the ExpressCardTM connector is off regardless of whether a card is present.
- 2. When both primary power and auxiliary power at the input of the ExpressCardTM power switch are on, then power is only applied to the ExpressCardTM after the ExpressCardTM power switch detects that a card is present.
- 3. When primary power (either +3.3V or +1.5V) at the input of the ExpressCardTM power switch is off and auxiliary power at the input of the ExpressCardTM power switch is on, then the ExpressCardTM power switch behaves in the following manner:
- (a) If neither of the Card Present inputs is detected (no card inserted), then no power is applied to the ExpressCardTM slot.
- (b) If the card is inserted after the system has entered this power state, then no power is applied to the $ExpressCard^{TM}$ slot.
- (c) If the card is inserted prior to the removal of the primary power (either +3.3V or +1.5V or both) at the input of the ExpressCardTM power switch, then only the primary power (both +3.3V and +1.5V) is removed and the auxiliary power is sent to the ExpressCardTM slot.

Figure 2 through Figure 7 illustrate the timing relationships between power/logic inputs and outputs of ExpressCardTM.

■ TEST CIRCUITS AND VOLTAGE WAVEFORMS

Parameter Measurement Information I_{O(3.3VOUT/AUXOUT)} LOAD CIRCUIT LOAD CIRCUIT Voltage Waveforms ----- V_{I(3,3V/AUXIN)} **GND GND** $t_{\mathsf{pd}(\mathsf{on})}$ 90% $V_{O(3.3VOUT/AUXOUT)}$ $V_{O(1.5VOUT)}$ **GND** Propagation Delay (3.3VOUT/AUXOUT) Propagation Delay (1.5VOUT) $V_{O(1.5VOUT)}$ $V_{O(3.3VOUT/AUXOUT)}$ Rise/Fall Time (1.5VOUT) Rise/Fall Time (3.3VOUT/AUXOUT) **GND** $V_{I(3.3V)} \\$ $V_{O(1.5VOUT)}$ $V_{O(3.3VOUT/AUXOUT)}$ Turn On/Off Time (3.3VOUT/AUXOUT) Turn On/Off Time (1.5VOUT)

Figure 1. Test Circuits and Voltage Waveforms

EXPRESS CARD TIMING DIAGRAMS

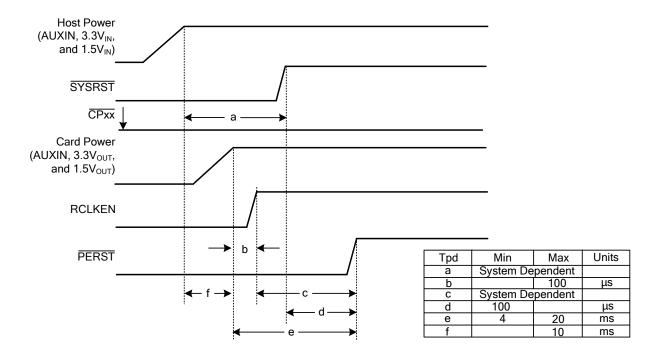
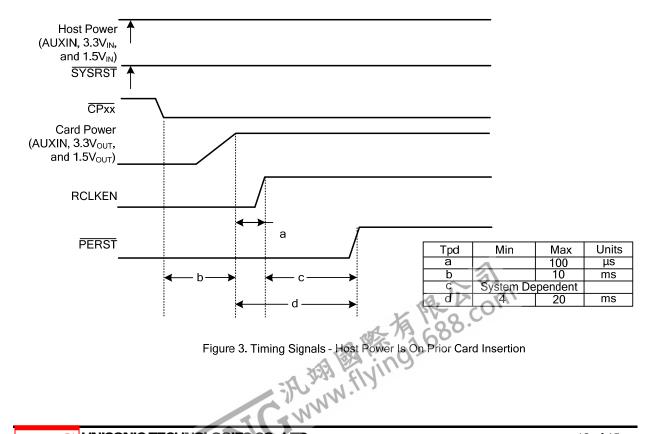
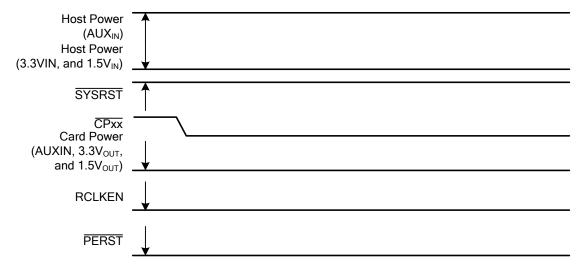




Figure 2. Timing Signals - Card Present Before Host Power Is On

QW-R502-A82.a

■ EXPRESS CARD TIMING DIAGRAMS(Cont.)

Note: Once 3.3V and 1.5V are applied, the power switch follows the power-up sequence of Figure 2 or Figure 3.

Figure 4. Timing Signals - Host System In Standby Prior to Card Insertion

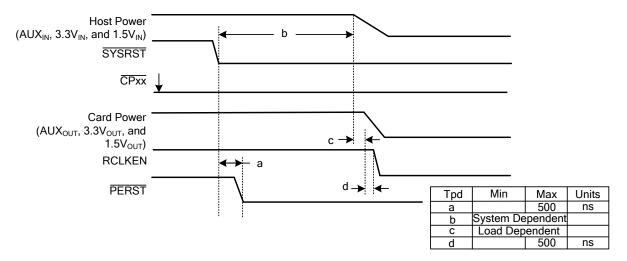


Figure 5. Timing Signals - Host - Controlled Power Down

■ EXPRESS CARD TIMING DIAGRAMS(Cont.)

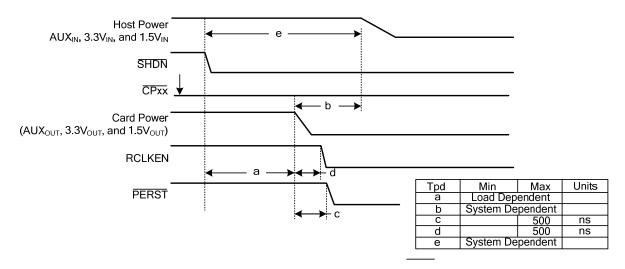


Figure 6. Timing Signals - Controlled Power Down When SHDN Asserted

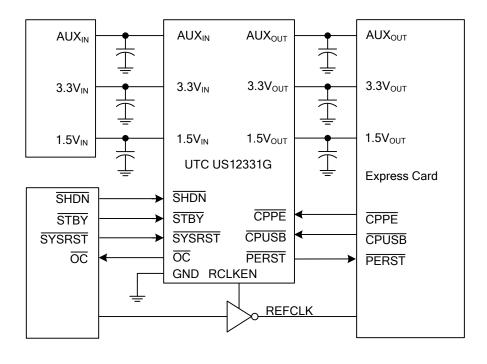



Figure 7. Timing Signals - Surprise Card Removal

QW-R502-A82.a

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.