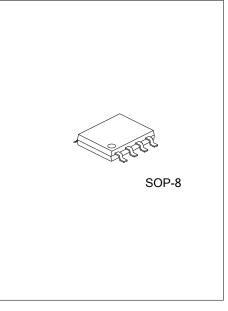


UNISONIC TECHNOLOGIES CO., LTD

US2236108DB


Preliminary

LINEAR INTEGRATED CIRCUIT

ULTRA SMALL, LOW INPUT VOLTAGE, LOW R_{on} LOAD SWITCHE

DESCRIPTION

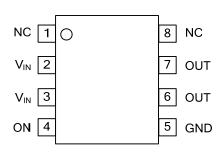
The UTC **US2236108DB** is an ultra-small, low ON-state resistance (R_{ON}) load switch with controlled turn on. The device contains a P-channel MOSFET that operates over an input voltage range of 1.0 V to 3.6 V. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals. A 120- Ω on-chip load resistor is added for output quick discharge when the switch is turned off.

FEATURES

- * Low Input Voltage: 1.0V~3.6V
- * Ultra-Low ON-State Resistance
- R_{ON} =90mΩ at V_{IN}=3.6V R_{ON} =100mΩ at V_{IN}=2.5V
- R_{ON} =114m Ω at V_{IN}=1.8V
- R_{ON} =172m Ω at V_{IN}=1.2V
- * 500mA Maximum Continuous Switch Current
- * Ultra Low Quiescent Current: 82nA at 1.8V
- * Ultra Low Shutdown Current: 44nA at 1.8V
- * Low Control Input Thresholds Enable Use of 1.2V, 1.8V, 2.5V, 3.3V Logic
- * Controlled Slew Rate to Avoid Inrush Current: 220µs

ORDERING INFORMATION

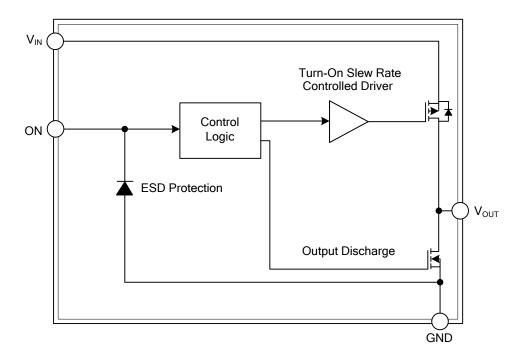
Ordering	Number	Dookago	Docking		
Lead Free	Halogen Free	Package	Packing		
US2236108DBL-S08-R	US2236108DBG-S08-R	SOP-8	Tape Reel		



US2236108DB

Preliminary

LINEAR INTEGRATED CIRCUIT


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1, 8	NC	
2, 3	V _{IN}	Switch input, bypass this input with a ceramic capacitor to ground
4	ON	Switch control input, active high
5	GND	Ground
6, 7	V _{OUT}	Switch output

BLOCK DIAGRAM

FUNCTION TABLE

Preliminary LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage Range	V _{IN}	4	V
Output Voltage Range	V _{OUT}	V _{IN} +0.3	V
Input Voltage Range	V _{ON}	4	V
Maximum Continuous Switch Current, T _A =-40°C~85°C	I _{MAX}	500	mA
Power Dissipation at T _A =25°C	PD	0.48	W
Maximum junction Temperature	TJ	+125	°C
Operating Temperature Range	T _{OPR}	-40 ~ +85	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	205	°C/W	

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Input Voltage Range	VIN	1.0		3.6	V
Output Voltage Range	Vout			V _{IN}	
High-Level Input Voltage, ON	VIH	0.85		3.6	V
Low-Level Input Voltage, ON	VIL			0.4	V
Input Capacitor	CIN	1			μF

ELECTRICAL CHARACTERISTICS (VIN=1.0V~3.6V, TA=25°C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
		I _{OUT} =0, V _{IN} =V _{ON}	V _{IN} =1.1V		37	120	nA
Quiescent Current	I _{IN}		V _{IN} =1.8V		82	235	nA
			V _{IN} =3.6V		204	880	nA
		V _{ON} =GND, OUT=Open	V _{IN} =1.1V		22	210	nA
OFF-State Supply Current	I _{IN(OFF)}		V _{IN} =1.8V		44	260	nA
			V _{IN} =3.6V		137	700	nA
	I _{IN(LEAKAGE)}	V _{on} =GND, V _{out} =0	V _{IN} =1.1V		22	140	nA
OFF-State Switch Current			V _{IN} =1.8V		45	230	nA
			V _{IN} =3.6V		137	610	nA
	R _{on}	I _{OUT} =-200mA	V _{IN} =3.6V		90	108	mΩ
			V _{IN} =2.5V		100	120	mΩ
ON-State Resistance			V _{IN} =1.8V		114	138	mΩ
			V _{IN} =1.2V		172	210	mΩ
			V _{IN} =1.1V		204	330	mΩ
Output Pulldown Resistance	R _{PD}	V _{IN} =3.3V, V _{ON} =0, I _{OUT} =30mA			88	120	Ω
ON Input Leakage Current	I _{ON}	V _{ON} =1.1V~3.6V or GND		3		25	nA

Note: Typical values are at the specified V_{IN} and $T_A=25^{\circ}C$.

120Ω, unless otherwise specified) SWITCHING CHARACTERISTICS (VIN=3.6V, TA=25°C, RLCHIP

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Turn-ON Time	t _{on}	1 FM :: 19		166		μs
Turn-OFF Time	t _{OFF}	R ₁ =500Ω, C ₁ =0.1µF		20		μs
V _{OUT} Rise Time	tr	RL=500Ω, CL=0.1µF		146		μs
V _{OUT} Fall Time	t _f	CINN		17		μs

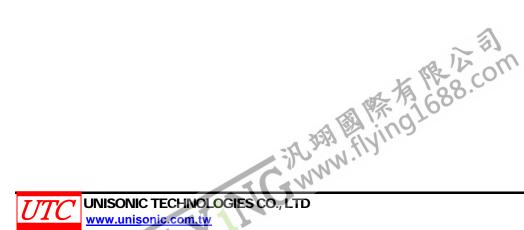
UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw

APPLICATION INFORMATION

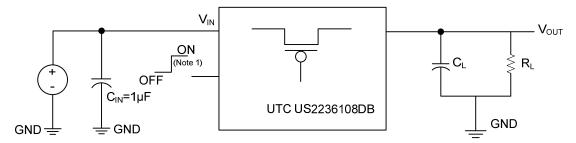
ON/OFF Control

The ON pin controls the state of the switch. Activating ON continuously holds the switch in the on state so long as there is no fault. ON is active HI and has a low threshold making it capable of interfacing with low voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2V, 1.8V, 2.5V or 3.3V GPIOs.

Input Capacitor

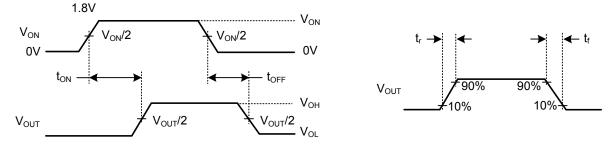

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between V_{IN} and GND. A 1- μ F ceramic capacitor, C_{IN} , place close to the pins is usually sufficient. Higher values of C_{IN} can be use to further reduce the voltage drop during high current application. When switching heavy loads, it is recommended to have an input capacitor about 10 times higher than the output capacitor, this in order to avoid excessive voltage drop.

Output Capacitor

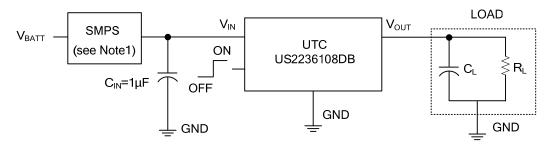

Due to the integral body diode in the PMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} .

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for V_{IN} , V_{OUT} , and GND helps minimize the parasitic electrical effects along with minimizing the case-to-ambient thermal impedance.



■ TEST CIRCUIT AND t_{on}/t_{off} WAVEFORMS


Preliminary

Note 1: t_r and t_f of the control signal is 100ns.

ton/toff WAVEFORMS

TYPICAL APPLICATION CIRCUIT

Note 1: Switched mode power supply

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

