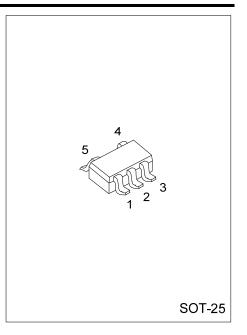
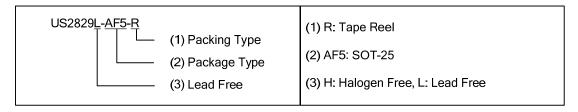
US2829 Preliminary CMOS IC

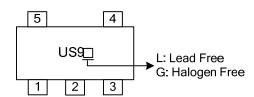

SINGLE-CHANNEL **HIGH-SPEED MOSFET DRIVER**

DESCRIPTION

The UTC US2829 is a single-channel high-speed MOS-FET driver. The device is fabricated by use of BICMOS outputs to achieve high switching speed. The outputs are capable of delivering peak currents up to 2A into capacitive loads.

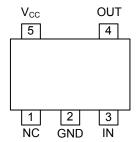

FEATURES

- * Low-cost single-channel high-speed MOSFET driver
- * 2A peak output current
- * 25ns max rise/fall times and 40ns max propagation delay,1nF
- * Low power dissipation: I_{CC}=15µA(Max) @ Ta=25°C
- * Broad V_{CC} operating range:4V to 14V



ORDERING INFORMATION

Ordering	Number	Package Packing		
Lead Free	Halogen Free	Package	Packing	
US2829L-AF5-R	US2829G-AF5-R	SOT-25	Tape Reel	

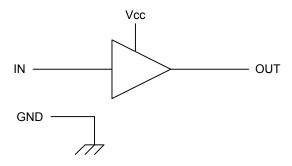


MARKING

Chunnital Balling 1688.com www.unisonic.com.tw 1 of 4 QW-R502-361.b

PIN CONFIGURATION

PIN DESCRIPTION


PIN NO.	PIN NAME	DESCRIPTION
1	NC	Not connected
2	GND	Ground Connection
3	IN	Driver input
4	OUT	Driver output, OUT= IN
5	V _{CC}	Driver supply voltage/regulator output voltage

FUNCTION TABLE

INPUT(IN)	OUTPUT(OUT)		
Н	Н		
L	L		

H: High Level L: Low Level

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATING

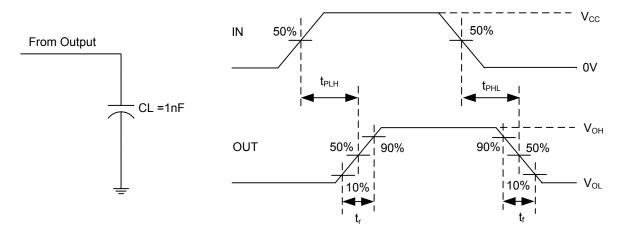
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.3 ~ +15	V
Input Voltage	V_{IN}	-0.3 ~ V _{CC} +0.5	V
Output Voltage	V_{OUT}	-0.5 ~ V _{CC} +0.5	V
Continuous Output Current	I _{OUT}	±100	mA
Power Dissipation	7	437	mW
Derated Above 25°C	P _D	3.5	mW/°C
Operating Temperature	T _{OPR}	-40 ~ + 125	°C
Storage Temperature	T _{STG}	-65 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	V_{CC}	4		14	V
Input Voltage	V_{IN}	-0.3		V _{CC}	V
Operating Temperature	T_OPR	-40		125	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TANAMETER	STIVIDOL				IVIAX	
High-Level Output Voltage	V _{OH}	V _{CC} =10V, I _{OH} =-1mA	9.75	9.9		V
Thigh Level Output Voltage		V _{CC} =10V, I _{OH} =-100mA	8	9.1		V
Low-Level Output Voltage		V _{CC} =10V, I _{OL} =1mA		0.18	0.25	V
Low-Level Output Voltage	V_{OL}	V _{CC} =10V, I _{OL} =100mA		1	2	V
Desitive going input threehold	V _{T+}	V _{CC} =5V		3.3	4	V
Positive-going input threshold		V _{CC} =10V		6.6	7	V
voltage		V _{CC} =14V		9.3	10	V
Negative-going input threshold voltage	V _{T-}	V _{CC} =5V	1	1.7		V
		V _{CC} =10V	2	3.3		V
		V _{CC} =14V	2.5	4.6		V
Input voltage hysteresis	$V_{T+}-V_{T-}$			1.3		V
Input Leakage Current	I _{I(LEAK)}	V_{CC} =10V, V_{IN} =0 or V_{CC}		0.2		μΑ
Supply Current	Icc	V _{CC} =10V, V _{IN} =V _{CC} or GND, I _{OUT} =0		0.1	15	μΑ
Input Capacitance	C _{IN}	V _{CC} =10V		5	10	pF

SWITCHING CHARACTERISTICS (see TEST CIRCUIT AND WAVEFORMS)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation dolay from input	t _{PLH} t _{PHL}	V _{CC} =14V, C _L =1nF			40	ns
Propagation delay from input		V _{CC} =10V, C _L =1nF		24	45	ns
(IN) to output(OUT)		V _{CC} =5V, C _L =1nF			50	ns
		V _{CC} =14V, C _L =1nF			25	ns
Output transition time	t_r/t_f	V _{CC} =10V, C _L =1nF		14	30	ns
		V _{CC} =5V, C _L =1nF			35	ns
					; QW-R50	3 of 4 12-361.b

■ TEST CIRCUIT AND WAVEFORMS

TEST CIRCUIT

PROPAGATION DELAY TIMES

Note: C_L includes probe and jig capacitance.

All input pulses are supplied by generators having the following characteristics: $P_{RR} \le 1 MHz$, $Z_0 = 50 \Omega$, $t_R \le 6 ns$.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.