3:1 MUXIDEMUX BUS SWITCH

- DESCRIPTION

The UTC US5C3309 is a single 1-of-3 Multiplexer/Demultiplexer. The low on-resistor (5Ω) allows connected to be made without any additional ground bounce noise or propagation delay when one channel is selected. An additional 3-State output is introduced if no channel is selected.

- FEATURES
* Low on-resistor connection between input and output (5Ω typical)
* Near-Zero propagation delay
* Direct bus connection when switches are ON
* Ultra Low Quiescent Power (0.2 $\mu \mathrm{A}$ typical)
- Ideally suited for notebook applications

■ ORDERING INFORMATION

Ordering Number	Package	Packing
US5C3309G-S08-R	SOP-8	Tape Reel
US5C3309G-SM1-R	MSOP-8	Tape Reel

| US5C3309G-S08-R | |
| :--- | :--- | :--- |
| (1)Packing Type
 (2)Package Type
 (3)Green Package | (1) R: Tape Reel
 (2) S08: SOP-8, SM1: MSOP-8
 (3) G: Halogen Free and Lead Free |

- MARKING

[12 $\sqrt[3]{4}$
- PIN CONFIGURATION

- PIN DESCRIPTION

PIN NO.	PIN NAME	
$1,2,3$	IAn	Data Inputs
4	GND	Ground
5	YA	Data Output
6,7	S0, S1	Select Inputs
8	VCC	Power

- TRUTH TABLE (Note 1)

Select			
S1	S0	YA	Function
L	L	IA0	S1-0 $=0$
L	H	IA1	$\mathrm{S} 1-0=1$
H	L	IA 2	$\mathrm{~S} 1-0=2$
H	H	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{S} 1-0=3$

Note: H=High Voltage Level, L=Low Voltage Level

- BLOCK DIAGRAM

- ABSOLUTE MAXIMUM RATING

(Above which the useful life may be impaired. For user guidelines, not tested.)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage to Ground Potential (Inputs \& V_{CC} Only)		$-0.5 \sim+7.0$	V
Supply Voltage to Ground Potential (Outputs \& D/O Only)		-0.5 ~ +7.0	V
DC Input Voltage		$-0.5 \sim+7.0$	V
DC Output Current		120	mA
Power Dissipation SOP-8 MSOP-8	PD	0.5	W
		0.35	W
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-65~+150	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	T_{A}	-40~+85	${ }^{\circ} \mathrm{C}$

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- DC ELECTRICAL CHARACTERISTICS (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$)

PARAMETER	SYMBOL	TEST CONDITIONS (Note 1)	MIN	TYP (Note 2)	MAX	UNIT
Input HIGH Voltage	$\mathrm{V}_{1 \mathrm{H}}$	Guaranteed Logic HIGH Level	2.0			V
Input LOW Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed Logic LOW Level	-0.5		0.8	V
Input HIGH Current	l_{IH}	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$			± 1	$\mu \mathrm{A}$
Input LOW Current	1 L	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	$\mu \mathrm{A}$
High Impedance Output Current	$\mathrm{l}_{\text {OzH }}$	$0 \leq l_{N}, Y_{N} \leq V_{\text {CC }}$			± 1	$\mu \mathrm{A}$
Clamp Diode Voltage	$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Min}, \mathrm{l}_{\mathrm{l}}=-18 \mathrm{~mA}$	-0.7		1.2	V
Short Circuit Current	los	$\mathrm{I}(\mathrm{Y})=0 \mathrm{~V}, \mathrm{Y}(\mathrm{I})=\mathrm{V}_{\mathrm{cc}}$			100	mA
Input Hysteresis at Control Pins	V_{H}			150		mV
Switch On-Resistance (Note 3)	$\mathrm{R}_{\text {ON }}$	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=48 \mathrm{~mA}$		5	7	Ω
		$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$, $\mathrm{I}_{\text {ON }}=15 \mathrm{~mA}$		10	15	Ω

Notes: 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between I and Y pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (I, Y) pins.

- POWER SUPPLY CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS (Note 1)		MIN	TYP (Note 2)	MAX	UNIT
Quiescent Power Supply Current	Icc	$V_{\text {cc }}=$ Max .	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{CC}		0.1	3.0	$\mu \mathrm{A}$
Supply Current per Input @ TTL HIGH	$\triangle \mathrm{Icc}$		$\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$ (Note 3)			2.5	mA
Supply Current Per Input Per MHz (Note 4)	1 CcD	VCC=Max. I and Y Pins Open Contro Input Toggling 50\% Duty Cycle				0.25	$\begin{aligned} & \hline \mathrm{mA} / \\ & \mathrm{MHz} \\ & \hline \end{aligned}$

Notes: 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$, control inputs only); I and Y pins donot contribute to I_{cc}.
4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The I and Y input's generate no significant AC or DC currents as they transition. The parameter is not tested, but is guaranteed by design.

- CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER (Note 1)	SYMBOL	TEST CONDITIONS (Note 1)	MIN	TYP	MAX	UNIT
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		3		pF
I_{A} Capacitance, Switch Off	C ${ }_{\text {OFF }}$			4		pF
IA Capacitance, Switch On	Con			16		pF

Note: This parameter is determined by device characterization but is not production tested.

- SWITCHING CHARACTERISTICS OVER OPERATING RANGE ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$)

PARAMETER	DESCRIPTION	TEST CONDITIONS	Com			UNIT
			MIN	TYP	MAX	
Propagation Delay (Note 1, 2) I_{N} to Y_{N}	t_{1}				0.25	ns
Bus Select Time S_{N} to Y_{N}	$\mathrm{t}_{\text {SY }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	0.5		6.6	ns
Bus Enable Time S_{N} to Y_{N}	$\mathrm{t}_{\text {PzH }} / \mathrm{t}_{\text {PZL }}$		0.5		6.0	ns
Bus Disable Time S_{N} to Y_{N}	$\mathrm{t}_{\text {PHZ }} / \mathrm{tPLZ}$		0.5		6.0	ns

Notes: 1. This parameter is guaranteed but not tested on Propagation Delays.
2. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

- TEST CIRCUIT

TEST CIRCUIT

■ SWITCH POSITIONS

TEST	S 1	R_{L}	V_{l}	C_{L}	V_{Δ}
$\mathrm{T}_{\mathrm{PD}(\mathrm{S})}$	Open	500Ω	$\mathrm{~V}_{\mathrm{CC}}$ or GND	50 pF	
$\mathrm{T}_{\mathrm{PLZ/TPZL}}$	7 V	500Ω	GND	50 pF	0.3 V
$\mathrm{~T}_{\text {PHZ/TPZH }}$	GND	500Ω	$\mathrm{~V}_{\mathrm{CC}}$	50 pF	0.3 V

ENABLE AND DISABLE TIMING

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES (TPD(S))

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

Notes: 1. CL includes probe and jig capacitance.
2. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
3. All input pulses are supplied by generators having the following characteristics: $P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{0}=50 \Omega$, $\mathrm{T}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{~T}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
4. The outputs are measured one at a time, with one transition per measurement.
5. $T_{\text {PLZ }}$ and $T_{P H Z}$ are the same as $T_{\text {DIS }}$.
6. $T_{\text {PZL }}$ and $T_{\text {PZH }}$ are the same as $T_{\text {EN }}$.
7. $T_{P L H}$ and $T_{P H L}$ are the same as $T_{P D}(\mathrm{~s})$.
8. All parameters and waveforms are not applicable to all devices.

UTC assumes no responsibility for equipment failures that result from lusing products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

