
USL3638 Advance CMOS IC

# HIGH PRECISION PSR CONSTANT CURRENT LED DRIVER

### DESCRIPTION

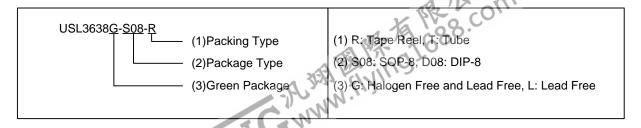
The UTC **USL3638** is a high performance, high precision primary-side feedback and regulation and constant current controller for LED lighting, The UTC **USL3638** operates in discontinuous conduction mode for inductor current. It is suitable for flyback convertor under the 90V~264V universal input. The system output power for UTC **USL3638** (SOP8) and UTC **USL3638** (DIP8) is recommended to be less than 8W and 11W.

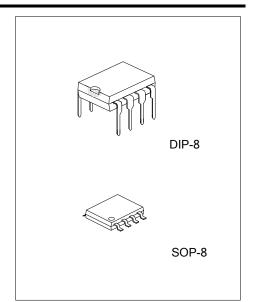
The UTC **USL3638** integrates 650V power MOSFET. Since adopting primary sense and feedback control technology, the secondary sense and feedback circuit is eliminated. The loop compensation components are also removed while maintaining



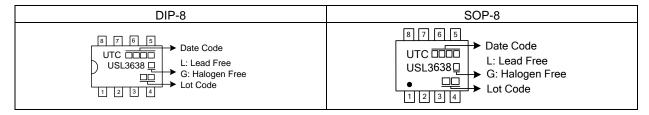
Since using the proprietary high accurate current sense method, the UTC **USL3638** realizes ±5% accuracy of LED current along with excellent line and load regulation.

The UTC **USL3638** has integrated rich protection functions including LED short/open circuit protection, CS resistor short circuit protection, over-temperature protection,  $V_{CC}$  under voltage protection. The industry leading OVP voltage accuracy ensures the best LED open circuit protection.

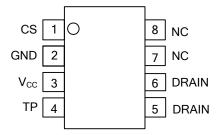




- \* Built-in 650V Power MOSFET
- \* No Auxiliary winding for sensing and supplying
- \* Constant current control without secondary sense and feedback circuit.
- \* Ultra low operating current to improve efficiency
- \* Universal input voltage

- \* ±5% LED current accuracy
- \* Choice for maximum duty cycle and OVP voltage
- \* CS resistor short circuit protection
- \* LED short and open circuit protection
- \* Over temperature protection
- \* V<sub>CC</sub> under-voltage protection


### **■ ORDERING INFORMATION**

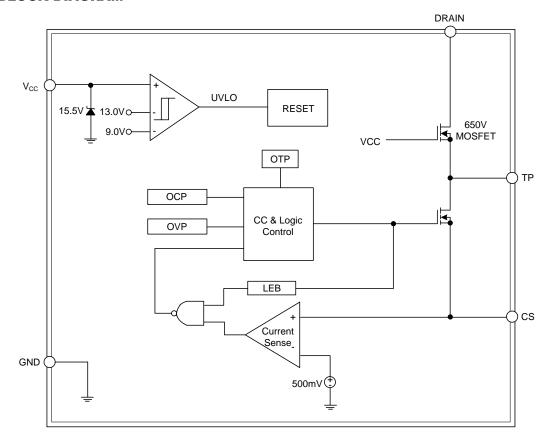
| Ordering Number |                | Dealters             | Packing   |  |
|-----------------|----------------|----------------------|-----------|--|
| Lead Free       | Halogen Free   | Halogen Free Package |           |  |
| USL3638L-S08-R  | USL3638G-S08-R | SOP-8                | Tape Reel |  |
| USL3638L-D08-T  | USL3638G-D08-T | DIP-8                | Tube      |  |






### **MARKING**




# PIN CONFIGURATION



### **PIN DESCRIPTION**

| PIN NO. | PIN NAME        | DESCRIPTION                                                                                                          |
|---------|-----------------|----------------------------------------------------------------------------------------------------------------------|
| 1       | CS              | Current sense. The sense resistor detecting the primary current of transformer is connected between this pin and GND |
| 2       | GND             | Ground                                                                                                               |
| 3       | V <sub>CC</sub> | Power supply                                                                                                         |
| 4       | TP              | Test point, must be floated                                                                                          |
| 5, 6    | DRAIN           | Internal high voltage MOSFET Drain                                                                                   |
| 7, 8    | NC              | No connection, must be floated                                                                                       |

### **BLOCK DIAGRAM**





## **ABSOLUTE MAXIMUM RATING**

| PARAMETER                                | SYMBOL              | RATINGS    | UNIT |
|------------------------------------------|---------------------|------------|------|
| V <sub>CC</sub> Pin Maximum Sink Current | I <sub>CC_MAX</sub> | 5          | mA   |
| Internal HV MOSFET Drain Voltage         | DRAIN               | -0.3 ~ 650 | V    |
| Current Sense Pin Input Voltage          | CS                  | -0.3 ~ 6   | V    |
| Internal HV MOSFET Source Voltage        | TP                  | -0.3 ~ 20  | V    |
| Power Dissipation                        | P <sub>DMAX</sub>   | 0.45       | W    |
| Operating Temperature                    | T <sub>OPR</sub>    | -40 ~ +105 | °C   |
| Junction Temperature                     | TJ                  | -40 ~ +150 | °C   |
| Storage Temperature                      | T <sub>STG</sub>    | -55 ~ +150 | °C   |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

### **RECOMMENDED OPERATION CONDITIONS**

| PARAMETER                                    | SYMBOL            | RATINGS | UNIT |
|----------------------------------------------|-------------------|---------|------|
| Output Power SOP-8 (Input Voltage 170V~265V) | P <sub>OUT1</sub> | <8      | W    |
| Output Power SOP-8 (Input Voltage 85V~265V)  | P <sub>OUT2</sub> | <7      | W    |
| Output Power DIP-8 (Input Voltage 170V~265V) | P <sub>OUT3</sub> | <11     | W    |
| Output Power DIP-8 (Input Voltage 85V~265V)  | P <sub>OUT4</sub> | <10     | W    |
| System Operating Frequency                   | F <sub>OP</sub>   | 52      | KHz  |

## THERMAL RESISTANCES CHARACTERISTICS

| PARAMETER           |       | SYMBOL        | RATING | UNIT |  |
|---------------------|-------|---------------|--------|------|--|
| Junction to Ambient | DIP-8 | 0             | 180    | °C/W |  |
|                     | SOP-8 | $\theta_{JA}$ | 145    | °C/W |  |



# ■ **ELECTRICAL CHARACTERISTICS** (Notes 1, 2) (Unless otherwise specified, V<sub>CC</sub>=14V and T<sub>A</sub>=25°C)

| PARAMETER                                    | SYMBOL               | TEST CONDITIONS                             | MIN  | TYP  | MAX | UNIT |  |
|----------------------------------------------|----------------------|---------------------------------------------|------|------|-----|------|--|
| Supply Voltage Section                       |                      |                                             |      |      |     |      |  |
| V <sub>CC</sub> Clamp Voltage                | $V_{CC\_Clamp}$      | 1mA                                         |      | 15.5 |     | V    |  |
| Turn On Threshold Voltage                    | $V_{CC\_ON}$         | V <sub>CC</sub> Rising                      |      | 13.0 |     | V    |  |
| Turn Off Threshold Voltage                   | $V_{CC\_UVLO}$       | V <sub>CC</sub> Falling                     |      | 9.0  |     | V    |  |
| V <sub>CC</sub> Startup Current              | I <sub>ST</sub>      | V <sub>CC</sub> =V <sub>CC_ON</sub> -1V     |      | 45   | 80  | μΑ   |  |
| V <sub>CC</sub> Operating Current            | I <sub>OP</sub>      |                                             |      | 130  | 300 | μΑ   |  |
| Current Sense Section                        |                      |                                             |      |      |     |      |  |
| Threshold Voltage for Peak Current Limit     | $V_{CS\_TH}$         |                                             | 485  | 500  | 515 | mV   |  |
| Leading Edge Blanking Time for Current Sense | $T_LEB$              |                                             |      | 500  |     | ns   |  |
| Switch Off Delay Time                        | $T_{DELAY}$          |                                             |      | 200  |     | ns   |  |
| Switching Frequency                          |                      |                                             |      |      |     |      |  |
| Minimum Working Frequency                    | $F_{MIN}$            |                                             |      | 5    |     | KHz  |  |
| Maximum Duty Cycle                           |                      |                                             |      |      |     |      |  |
| Maximum Duty Cycle                           | $D_{MAX}$            | IC temperature<150°C                        |      | 50   |     | %    |  |
| Maximum Duty Cycle                           | DMAX                 | IC temperature>150°C                        |      | 25   |     | %    |  |
| MOSFET Section                               |                      |                                             |      |      |     |      |  |
| Static Drain-Source On-Resistance            | R <sub>DS(ON)</sub>  | V <sub>GS</sub> =14V, I <sub>DS</sub> =0.5A |      | 6    |     | Ω    |  |
| Drain-Source Breakdown Voltage               | BV <sub>DSS</sub>    | $V_{GS}$ =0V, $I_{DS}$ =250 $\mu$ A         | 650  |      |     | V    |  |
| Drain-Source Leakage Current                 | I <sub>DSS</sub>     | V <sub>GS</sub> =0V, V <sub>DS</sub> =650V  |      |      | 10  | μΑ   |  |
| Maximum Drain Current                        | I <sub>DMAX</sub>    | Vd=6V                                       | 0.65 | 0.75 |     | Α    |  |
| Output Over Voltage Protection               |                      |                                             |      |      |     |      |  |
| Minimum Discharge Time                       | T <sub>DIS_MIN</sub> |                                             |      | 7.1  |     | μS   |  |
| OVP System Frequency                         | F <sub>OVP</sub>     |                                             |      | 70   |     | KHz  |  |
| Over Temperature Protection                  |                      |                                             |      |      |     |      |  |
| Thermal Protect Threshold                    | $T_{PRO}$            |                                             |      | 150  |     | °C   |  |
| Thermal Protect Hysteresis                   | T <sub>PRO_HYS</sub> |                                             |      | 25   |     | °C   |  |

Notes: 1. Production testing of the chip is performed at 25°C.

<sup>2.</sup> The maximum and minimum parameters specified are guaranteed by test, the typical value are guaranteed by design, characterization and statistical analysis.

### **■ FUNCTION DESCRIPTION**

The UTC **USL3638** is a high performance power switch specially designed for LED lighting. Benefit from an integrated 650V power MOSFET and its peculiar technology for constant current control, the accurate LED current can be realized without opto-coupler, TL431 feedback circuit and auxiliary winding which minimizing the external component count and lowering the total bill of material cost.

### Start Up

The start-up current in UTC **USL3638** is designed to as low as  $60\mu$ A. The V<sub>CC</sub> capacitor will be charged through the start-up resistor when the system is powered on. Once the V<sub>CC</sub> voltage reaches the start-up threshold, the UTC **USL3638** will start to switch. The UTC **USL3638** integrates a 15V V<sub>CC</sub> clamping circuit. Due to the ultra-low operating current, the auxiliary winding is not needed to supply the IC.

### **Constant Current Control**

The CS is connected to the inside current sense comparator and the voltage on CS will be compared with the internal 500mV reference voltage. The output of this comparator includes a 500nS leading edge blanking time. Once the voltage on CS reaches the threshold, the power MOSFET will be switched off until the control circuit generates an 'ON' signal. Above current sense process will be present in each cycle.

The primary peak current is given by:

$$I_{P_{-}PK} = \frac{500}{R_{CS}} (mA)$$

The current in LED can be calculated by the equation:

$$I_{OUT} = \frac{I_{P\_PK}}{2} \times \frac{N_P}{N_S} \times \frac{T_{DIS}}{T}$$

Where.

 $N_{\mbox{\scriptsize P}};$  primary winding turns of transformer

Ns: secondary winding turns of transformer

I<sub>P\_PK</sub>: peak current in MOSFET

T<sub>DIS</sub>/T: ratio of secondary discharge time and switching period, or duty cycle.

### **Power MOSFET**

The UTC **USL3638** integrates a 650V power N-MOSFET. It can minimize the external component count and reduce the BOM cost and PCB size.

The UTC **USL3638** uses SOP-8 package. The recommended system output power is below 5W in universal input (85V~265V) application.

### **Operating Switching Frequency**

The UTC **USL3638** is designed to work in discontinuous conduction mode and no external loop compensation component is required while maintaining stability. The maximum duty cycle is limited to 50%. The maximum switching frequency at normal operation is suggested to set around 52KHz. If the maximum frequency is set too high, it will affect the number of maximum series LED lamps. If set too low, the LED open circuit voltage will be too high.

The maximum and minimum switching frequency is limited in UTC USL3638 to ensure the stability of system.

The switching frequency can be set by the formula:

$$f = \frac{D_{MAX}^2 \times Np^2 \times V_{LED}}{2 \times Ns^2 \times Lp \times I_{LED}}$$
since of transformer.

Where, L<sub>P</sub> is the primary winding inductance of transformer.

### **■ FUNCTION DESCRIPTION(Cont.)**

#### **Protection Function**

The UTC **USL3638** offers rich protection functions, LED short/open protection, CS resistor short circuit protection,  $V_{CC}$  under voltage protection, over temperature protection, and so on. When the LED is open circuit, it will trigger over-voltage protection logic and latch, the system stops switching immediately.

When the LED short circuit is detected, the system works at low frequency (Fop=5KHz), so the power consumption is low. At some catastrophic fault condition, such as shorted CS resistor or flyback transformer saturation, the internal fast fault detection circuit will trigger and latch, the system stops switching immediately.

After the system enters into fault latch condition, the  $V_{CC}$  voltage will fall until it reaches UVLO threshold. Then the system will re-start again. If the fault condition is removed, the system will recover to normal operation

The thermal shutdown circuitry in the UTC **USL3638** senses the die temperature after start up, and the thermal protection threshold is set to 150°C with a 25°C hysteresis. When the temperature on die of UTC **USL3638** rises and reaches the threshold, the output current will be reduced by half immediately until the temperature on die falls 25°C from thermal protection trigger point.

### **PCB Layout**

The following rules should be followed in UTC USL3638 PCB layout:

**Bypass Capacitor** 

The bypass capacitor on V<sub>CC</sub> should be as close as possible to the V<sub>CC</sub> pin and GND pin.

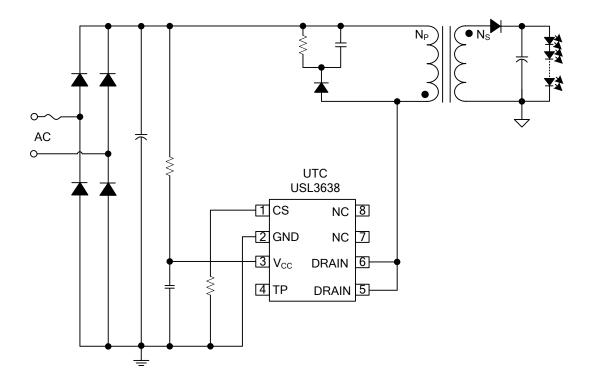
Ground Path

The power ground path for current sense should be short, and the power ground path should be separated from small signal ground path before the negative of the bulk capacitor.

The Area of Power Loop

The area of main current loop should be as small as possible to reduce EMI radiation, such as the primary current loop, the snubber circuit and the secondary rectifying loop.

TP and NC Pin


The TP and NC pin must be left floating to satisfy the requirement of creepage distance.

Drain pin

To increase the copper area of drain for thermal consideration.



### TYPICAL APPLICATION CIRCUIT



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.