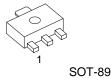
USS4360X

Preliminary

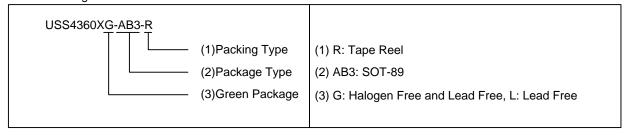

NPN EPITAXIAL SILICON TRANSISTOR

60V NPN LOW SATURATION MEDIUM POWER TRANSISTOR

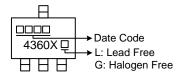
DESCRIPTION

The **USS4360X** is an new low saturation 60V NPN transistor offers extremely low on state losses making it ideal for use in DC-DC circuits and various driving and power management functions.

PNP complement: USS5360Z.


■ FEATURES

- * Low collector-emitter saturation voltage V_{CE(SAT)}
- * High collector current capability IC and ICM
- * High collector current gain (hFE) at high IC
- * High efficiency due to less heat generation
- * Smaller required Printed-Circuit Board (PCB) area than for conventional transistors


■ ORDERING INFORMATION

Ordering Number		Daakaaa	Pin Assignment			Deeldee	
Lead Free	Halogen Free	Package	1	2	3	- Packing	
USS4360XL-AB3-R	USS4360XG-AB3-R	SOT-89	В	С	Е	Tape Reel	

Note: Pin Assignment: B: Base C: Collector E: Emitter

■ MARKING

Co., Ltd

www.unisonic.com.tw 1 of 3

ABSOLUATE MAXIUM RATINGS (T_A= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector to Base Voltage	V_{CBO}	60	V
Collector to Emitter Voltage	V_{CEO}	60	V
Emitter to Base Voltage	V_{EBO}	7	V
Bese Current	I _B	500	mA
Collector Current	I _C	3	Α
Peak Collector Current	I _{CM}	6	Α
Collector Dissipation	Pc	0.95	W
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	132	°C/W

Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

■ **ELECTRICAL CHARACTERISTICS** (T_A= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector-Base Breakdown Voltage	BV_CBO	I _C =100μA	80			V
Collector-Emitter Breakdown Voltage	BV_CEO	I _C =1mA	60			V
Emitter-Base Breakdown Voltage	BV_{EBO}	I _E =100μA	7			V
Collector Cutoff Current	I_{CBO}	V_{CB} =48V, I_{E} =0A			100	nA
Collector-Emitter Cut-off Current	I _{CES}	V _{CE} =48V			100	nA
Emitter Cutoff Current	I_{EBO}	$V_{EB}=5V$, $I_{C}=0A$			100	nA
Base Emitter On Voltage (Note)	$V_{BE(ON)}$	V _{CE} =5V, I _C =1A			1.1	V
Base-Emitter Saturation Voltage (Note)	$V_{BE(SAT)}$	I _C =1A, I _B =100mA			1.2	V
Collector-Emitter Saturation Voltage (Note)	V _{CE(SAT)}	I _C =500mA, I _B =50mA			75	mV
		I _C =1A, I _B =100mA			150	mV
		I _C =2A, I _B =200mA			275	mV
		I _C =3A, I _B =300mA			400	mV
DC Current Transfer Ratio (Note)	h _{FE}	I_C =50mA, V_{CE} =5 V	200			
		I _C =500mA, V _{CE} =5V	200			
		I _C =1A, V _{CE} =5V	200			
		$I_C=2A$, $V_{CE}=5V$	120			
		I _C =3A, V _{CE} =5V	75			
Transition Frequency	f_{T}	I _C =50mA, V _{CE} =10V, f=100MHz	75	145		MHz
Collector Capacitance	Сов	$V_{CB}=10V$, $I_{E}=I_{e}=0A$, $f=1MHz$		11	14	рF

WWW. Flying 1688.com Note: Measured under pulsed conditions. Pulse Test: Pulse width ≤ 300µs, Duty cycle≤2%.

^{2.} Single pulse, P_W=10ms.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.