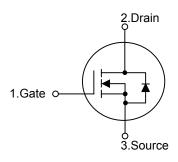


UNISONIC TECHNOLOGIES CO., LTD

UT120N03 Preliminary Power MOSFET

120A, 30V N-CHANNEL POWER MOSFET

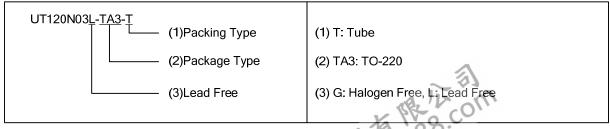
■ DESCRIPTION


The UTC **UT120N03** is a N-channel power MOSFET using UTC's advanced trench technology to provide customers with a minimum on-state resistance and superior switching performance.

The UTC **UT120N03** is generally applied in DC to DC convertors or synchronous rectifications.

■ FEATURES

- * I_D = 120A
- * V_{DS}=30V
- * $R_{DS(ON)}$ =3.8 $m\Omega$ @ V_{GS} =10V
- * Low Gate Charge (Typical 54nC)
- * Fast Switching
- * 100% Avalanche Tested
- * High Power and Current Handling Capability


SYMBOL

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT120N03L-TA3-T	UT120N03G-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

TO-220

www.unisonic.com.tw 1 of 6

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	30	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current	Continuous	I _D	120	Α	
	Pulsed (Note 2)	Pulsed (Note 2) I _{DM}		Α	
Single Pulsed Avalanche Energy (Note 3)		E _{AS}	240	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	6.0	V/ns	
Power Dissipation (T _C =25°C)		P_{D}	125	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55~+150	°C	

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

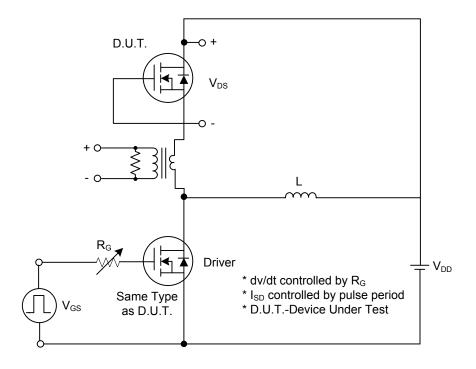
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 0.61mH, I_{AS} = 28A, V_{DD} = 27V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 4. $I_{SD} \le 80A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$
- 5. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 100A.

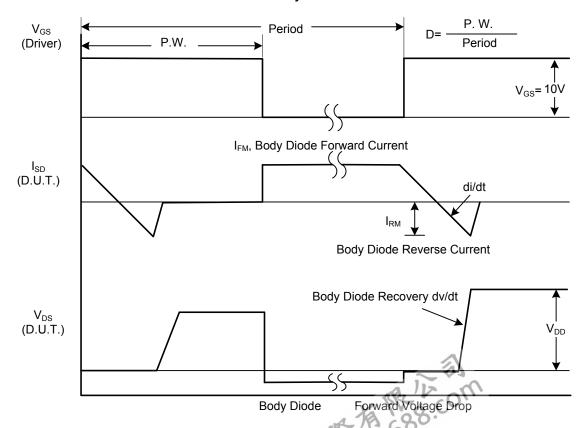
■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	1	°C/W	

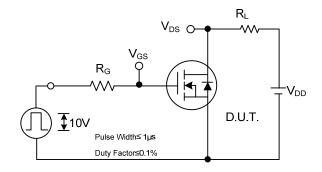
■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

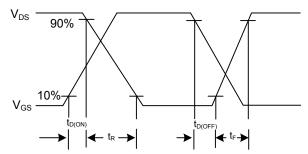

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS		•			•		
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V, T _C =25°C	30			V
Breakdown Voltage Temperature Coefficient		△BV _{DSS} /△T _J	Reference to 25°C, I _D =250µA				mV/°C
Drain-Source Leakage Current		I _{DSS}	V _{DS} =30V, V _{GS} =0V			1	μA
Gate- Source Leakage Current	Forward	loos	V _{GS} =+20V, V _{DS} =0V		0.02	100	nA
	Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V		-0.02	-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.0		3.0	V
Static Drain-Source On-State Resistance		Proven	V_{GS} =10V, I_D =35A			3.8	mΩ
		R _{DS(ON)}	V _{GS} =4.5V, I _D =35A			6.4	mΩ
DYNAMIC PARAMETERS							_
Input Capacitance		C _{ISS}			2990		pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		585		pF
Reverse Transfer Capacitance		C _{RSS}			340		pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_{G}	\\ _5\\ \\ _45\\ _35A		54	72	nC
Gate to Source Charge		Q_{GS}	V _{GS} =5V, V _{DS} =15V, I _D =35A (Note 1, 2)		8.0		nC
Gate to Drain Charge		Q_{GD}	(Note 1, 2)		10		nC
Turn-ON Delay Time		t _{D(ON)}			9		ns
Rise Time		t _R	V_{DD} =15V, I_{D} =35A, R_{G} =4.7 Ω ,		96		ns
Turn-OFF Delay Time		t _{D(OFF)}	V _{GS} =5V (Note 1, 2)		47		ns
Fall-Time		t _F			37		ns
Gate Resistance		R_g			2.0		Ω
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS							
Drain-Source Diode Forward Voltage		V _{SD}	I _S =120A, V _{GS} =0V			1.25	V
Maximum Body-Diode Continuous Current		Is				120	Α
Maximum Body-Diode Pulsed Current		I _{SM}			·	480	Α

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

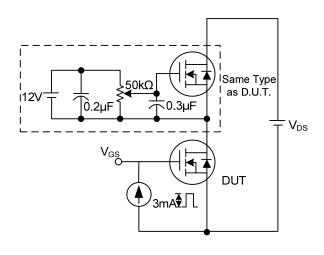

2. Essentially independent of operating temperature

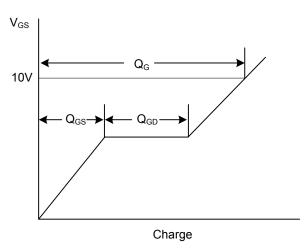
■ TEST CIRCUITS AND WAVEFORMS



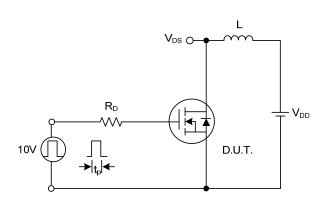

Peak Diode Recovery dv/dt Test Circuit

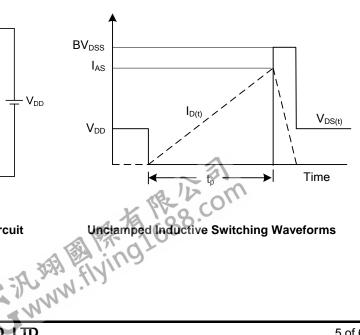
Peak Diode Recovery dwdt Waveforms


TEST CIRCUITS AND WAVEFORMS (Cont.)



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

