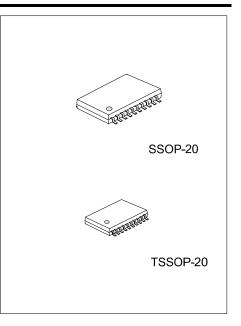


UTC UNISONIC TECHNOLOGIES CO., LTD

UT3223 Preliminary CMOS IC

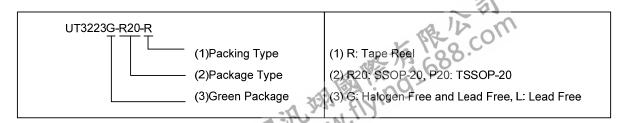

+3.0V TO +5.5V POWER SUPPLY, 250KBPS, MULTICHANNAEL RS-232 LINE DRIVERS/RECEIVERS

DESCRIPTION

The UTC UT3223 consists of 2 drivers and 2 receivers. It meets EIA/TIA-232 and V.28/V.24 specifications, it intended for notebook computer applications. A high-efficiency, dual charge-pumps power supply and a low-dropout transmitter combine to deliver true RS-232 performance from a single +3.0V~+5.5V power supply. A guaranteed data rate of 250kbps provides compatibility with popular software for communicating with PCs.

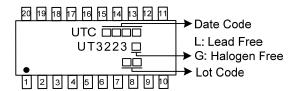
The UTC UT3223 achieves 1µA supply current in shutdown condition. When the UT3223 doesn't detect a valid signal level on its receiver inputs, the on-board power supply and drivers will shutdown, and when a valid level is applied to any RS-232 receiver input, then the system turns on again. Therefore, the system saves power without changes to the existing BIOS or operating system.

The UTC UT3223 requires only 0.1µF capacitors in 3.3V operation, and can operate from input voltages ranging from +3.0V ~+5.5V. It is ideal for 3.3V-only systems, 5.0V-only systems, or mixed 3.3V and 5.0V systems that require true RS-232 performance.

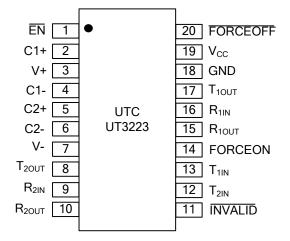


FEATURES

- * Operates With 3.0V~5.5V Power Supply
- * Two Drivers and Two Receivers
- * Operates Up To 250 kbps
- * Designed to Transmit at a Data Rate of 250 kbps
- * Low Standby Current (1µA Typical)
- * External Capacitors (4*0.1µF)
- * Accepts 5.0V Logic Input With 3.3V Supply
- * Serial-Mouse Drivability
- * Exceeds ±8KV ESD Protection(HBM) for RS-232 I/O Pins

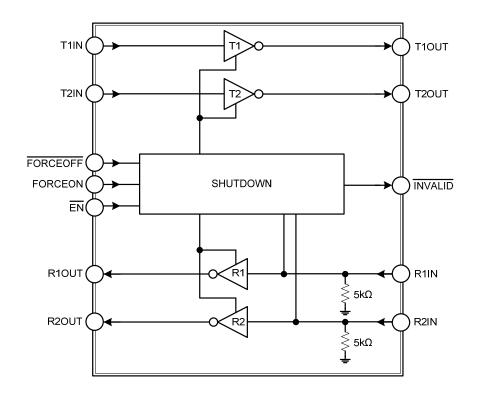

ORDERING INFORMATION

Ordering	g Number	Dookogo	Dooking	
Lead Free Halogen Free		Package	Packing	
UT3223L-R20-R	UT3223G-R20-R	SSOP-20	Tape Reel	
UT3223L-P20-R	UT3223G-P20-R	TSSOP-20	Tape Reel	



www.unisonic.com.tw 1 of 9

MARKING


PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION				
1	EN	Receiver Enable Control. Drive low for normal operation. Drive high to force the receiver outputs (R_OUT) into a high-impedance state.				
2	C1+	Positive terminal of the voltage doubler charge-pump capacitor.				
3	V+	+5.5V generated by the charge pump.				
4	C1-	Negative terminal of the voltage doubler charge-pump capacitor.				
5	C2+	Positive terminal of inverting charge-pump capacitor.				
6	C2-	Negative terminal of inverting charge-pump capacitor.				
7	V-	-5.5V generated by the charge pump.				
8	T _{2OUT}	RS-232 Transmitter 2 Output.				
9	R _{2IN}	RS-232 Receiver 2 Input.				
10	R_{2OUT}	TTL/CMOS Receiver 2 Output.				
11	INVALID	Output of the valid signal detector. Indicates if a valid RS-232 level is present on receiver inputs logic "1".				
12	T_{2IN}	TTL/CMOS Transmitter 2 Input.				
13	T _{1IN}	TTL/CMOS Transmitter 1 Input.				
14	FORCEON	Drive high to override automatic circuitry keeping transmitters on (FORCEOFF must be high) (Table 2).				
15	R _{10UT}	TTL/CMOS Receiver 1 Output.				
16	R _{1IN}	RS-232 Receiver 1 Input.				
17	T _{10UT}	RS-232 Transmitter 1 Output.				
18	GND	Ground.				
19	V_{CC}	+3.0V ~ +5.5V Supply Voltage.				
20	FORCEOFF	Drive low to shut down transmitters and on-board power supply. This over-rides all automatic circuitry and FORCEON (Table 2).				
	automatic circuitry and FORCEON (Table 2).					
ITTC	UNISONIC TEC	HINOLOGIES CO., LTD 2 of 9				

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL RATINGS		UNIT		
Vcc		V_{CC}	-0.3 ~ +6.0	V		
V+ (Note 2)	2)		te 2)		-0.3 ~ +7.0	V
V- (Note 2)		V-	+0.3 ~ -7.0	V		
V+ + V- (Note 2)		V_{PUMP}	+13.0	V		
Input Voltages	T_IN, FORCEOFF, FORCEON, EN	V_{IN}	-0.3 ~ +6.0	V		
	R_IN		±25	V		
0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	T_OUT	.,	±13.2	V		
Output Voltages	R_OUT, INVALID	V_{OUT}	-0.3 ~ (V _{CC} +0.3)	V		
Short-Circuit Duration	T_OUT	SC	Continuous			
Power Dissipation(T _A =25°C)		P_D	870	mW		
Operating Temperature		T _{OPR}	-40 ~ +85	°C		
Storage Temperature		T_{STG}	-65 ~ +150	°C		

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. V+ and V- can have maximum magnitudes of 7.0V, but their absolute difference cannot exceed 13.0V.

ELECTRICAL CHARACTERISTICS

 $(V_{CC}=+3.0V\sim+5.5V, C1\sim C4=0.1\mu F \text{ (Note 2)}, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified)}$

						i wise specified				i — —
PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT		
DC CHARACTERISTICS										
Supply Current, Shutdown		Ishon	V _{CC} =3.3V	All R_IN open, FORCEOFF =V _{CC} , FORCEON=GND			1.0	10	μΑ	
			or 5.0V,	FORCEOFF All R_IN=G		D,		1.0	10	μA
Supply Current, Shutdown Disabled		Icc		FORCEON no load	I= FOF	RCEOFF =V _{CC} ,		0.3	1.0	mA
LOGIC INPUTS										
	Low	V_{LGL}	EN ,T_IN,	FORCEON	, FOR	CEOFF			0.8	V
Input Logic Threshold	I II ada		EN ,T_IN,	EN, FORCE	EON,	V _{CC} = 3.3V	2.0			
	High	V_{LGH}	FORCEOF			V _{CC} = 5.0V	2.4			V
Input Leakage Current		I _{IN(LK)}	T_IN, EN	, FORCEON	N, FO	RCEOFF		±0.01	±1.0	μΑ
RECEIVER OUTPUTS	1									
Output Leakage Curre	nt	I _{ROUT(LK)}	Receivers disabled			±0.05	±10	μΑ		
Output Voltage	Low	V_{ROUTL}	I _{OUT} = 1.6mA				0.4	V		
- Lipat Voltago	High	V _{ROUTH}	I _{OUT} = -1.0mA		V _{CC} - 0.6	V _{CC} - 0.1		V		
AUTOSHUTDOWN (F	ORCEON=	GND, FOR	CEOFF =VC	c)						
Receiver Input Thresholds to	Enabled	$V_{R(EN)}$	Fig.1 Positive threshold Negative threshold		-2.7		2.7	V		
Transmitters	Disabled	$V_{R(DIS)}$	1μA supply current, Fig.1			-0.3		0.3	V	
INVALID Output	Low	V _{INVL}	I _{OUT} =1.6m/			SPL (\mathcal{I}_{II}		0.4	V
Voltage	High	V_{INVH}	I _{OUT} =-1.0m	A	a Xe	1.28.	V _{CC} - 0.6			V
Receiver Threshold to Transmitters Enabled		t _{wu}	Fig.2				100		μs	
		/4	CO (III)	NN EIN	///					
	C TECHIN	POLOCILO	CO., LTD						QW-R5	4 of 9 02-A91.e

ELECTRICAL CHARACTERISTICS(Cont.)

 $(V_{CC}$ =+3.0V~+5.5V, C1~C4=0.1µF (Note 2), T_A = T_{MIN} to T_{MAX} , Unless Otherwise Specified)

						1	
PARAMETER Receiver Positive or High		TEST CONDITIONS		MIN	TYP	MAX	UNIT
High	t _{INVH}	Fig. 2			1.0		μs
Low	t _{INVL}	· ·9·–			30		μs
	V_{RR}			-25		25	V
	\/	T -25°C	V _{CC} =3.3V	0.6	1.2		V
	VRINL	1A-25 C	V _{CC} =5.0V	8.0	1.5		V
	\/	T -25°C	V _{CC} =3.3V		1.5	2.4	V
	V RINH	1A-25 C	V _{CC} =5.0V		1.8	2.7	V
	V _{RINHYS}				0.5		V
		T _A =25°C		3	5	7	kΩ
S							
	V _{TOUTSW}	All transmitter outputs ground	loaded with 3kΩ to	±5.0	±5.4		٧
Output Resistance		V _{CC} = V+=V-=0V, Transmitter output=±2V		300	10M		Ω
Output Short-Circuit Current					±35	±60	mΑ
	I _{TOUT(LK)}	V _{CC} =3.0V~5.0V, V _{OUT}	=±12V,			±25	μA
rics	•				l.		
	DR	$R_L=3k\Omega$, $C_L=1000pF$ switching	, one transmitter	250			kbps
1	t _{PHL}	Receiver input to receiver output,			0.15		
Receiver Propagation Delay		C _L =150pF			0.15		μs
Enable	t _{R(EN)}	Normal operation			200		ns
Disable	t _{R(DIS)}				200		ns
Transmitter Skew		tphl — tplh			100		ns
Receiver Skew t _{RS} t _{PHL} - t _{PLH}		t _{PHL} - t _{PLH}			50		ns
Transition-Region Slew Rate		V_{CC} =3.3V, T_A =25°C, R_L =3k Ω ~7k Ω , measured from +3V ~-3V or -3V~+3V	C _L =220pF~1000pF	5		35	V/µs
	High Low SS ent FICS ay Enable Disable	SYMBOL	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	High t_{INVH Low Low t_{INVL End Low Low t_{INVL End Low L	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SYMBOL TEST CONDITIONS MIN TYP MAX

Notes: 1. Typical values are at T_A =25°C.

2. C1~C4=0.1 μ F, measured at 3.3V±10%. C1=0.047 μ F, C2~C4=0.33 μ F, measured at 5.0V ±10%.

DETAILED DESCRIPTION

Charge-Pump Voltage Converter

The UTC UT3223 consists of a regulated dual charge pumps that provide output voltages of +5.5V and -5.5V, regardless of the input voltage (V_{CC}) changing from +3.0V to +5.5V.

The charge pumps operate in a discontinuous mode: if the output voltages are less than 5.5V, the charge pumps are enabled; if the output voltages exceed 5.5V, the charge pumps are disabled.

Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies, refer to application circuit.

RS-232 Transmitters

UTC UT3223's transmitters are inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. They guarantee a 250kbps data rate with worst-case loads of $3k\Omega$ in parallel with 1000pF, providing compatibility with PC-to-PC communication software.

Transmitters can be paralleled to drive multiple receivers or mouse. When FORCEOFF is driven to ground, or shutdown circuitry senses invalid voltage levels at all receiver inputs, the transmitters are disabled and the outputs are forced into a high-impedance state.

RS-232 Receivers

The UTC UT3223's receivers convert RS-232 signals to CMOS-logic output levels. All receivers have one inverting three-state output. In shutdown or in autoshutdown, the **UT3223**'s receivers are active. Drive \overline{EN} high to place the receiver in a high-impedance state.

Table 1. EN Control Truth Table

EN	R_OUT		
0	Active		
1	High-Z		

Shutdown Function

A 1µA supply current is achieved with shutdown feature, which operates when FORCEON is low and FORCEOFF is high. When the UTC UT3223 senses no valid signal levels on all receiver inputs for 30µs, the on-board power supply and drivers are shut off, reducing supply current to 1µA. This occurs if the RS-232 cable is disconnected or the connected peripheral transmitters are turned off. The system turns on again when a valid level is applied to any RS-232 receiver input. As a result, the system saves power without changes to the existing BIOS or operating system. INVALID indicates the receiver inputs' condition, when using shutdown function, the INVALID output is high when the device is on and low when the device is shut down.

Table 2. Shutdown Logic Control Truth Table

OPERATION STATUS	FORCEOFF INPUT	FORCEON INPUT	INVALID OUTPUT	T_OUT		
Normal Operation (Forced On)	Н	Н	Χ	Active		
Normal Operation (AutoShutdown)	Н	L	Н	Active		
Normal Operation (AutoShutdown)	Н	L	L	High-Z		
Shutdown (Forced Off)	L	Х	X	High-Z		
TO WWW. Flying 1688.com						
UNISONIC TECHNOLOGIES		6 of 9 QW-R502-A91.e				
www.unisonic.com.tw	www.unisonic.com.tw					

■ DETAILED DESCRIPTION(Cont.)

Table 2 summarizes the UTC **UT3223** operating modes. FORCEON and FORCEOFF override the automatic circuitry and force the transceiver into its normal operating state or into its low-power standby state. When neither control is asserted, the IC selects between these states automatically based on receiver input levels.

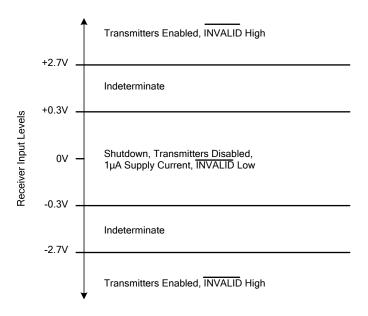


Fig.1 Shutdown Input Levels

When shutdown, the UTC **UT3223**'s charge pumps are turned off, V+ decays to V_{CC} , V- decays to ground, the transmitter outputs are disabled (high impedance). The time required to exit shutdown is typically 100 μ s.

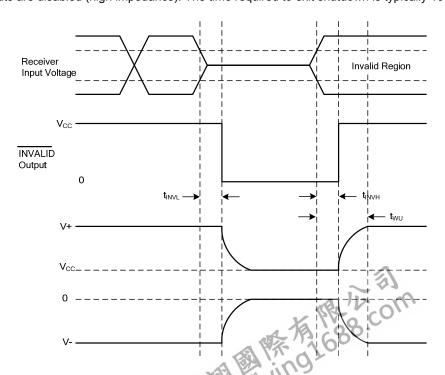


Fig.2 Shutdown Input Timing

TYPICAL APPLICATION CIRCUIT

Fig.3 Application Circuit

Table 3. Required Capacitor Value

V _{CC} (V)	C1 (µF)	C2, C3, C4 (µF)	C _{BYPASS} (µF)					
3.0~3.6	0.22	0.22	0.22					
3.15~3.6	0.1	0.1	0.1					
4.5~5.5	0.047	0.33	0.047					
3.0~5.5	0.22	1.0	0.22					
	3.0~5.5 0.22 1.0 0.22							
UTC UNISONIC TEC	8 01 9							
www.umsonic.	COILLY		QW-R502-A91.e					

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.