

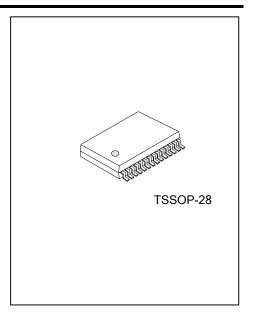
UNISONIC TECHNOLOGIES CO., LTD

UT3238 **Preliminary CMOS IC**

+3.3V TO +5.0V POWER SUPPLY, 250KBPS, RS-232 LINE DRIVERS/RECEIVERS

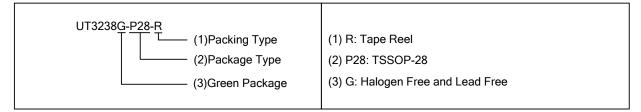
DESCRIPTION

The UTC UT3238 consists of 5 drivers and 3 receivers. It meets EIA/TIA-232 and V.28/V.24 specifications, it intended for notebook computer applications. A high-efficiency, dual charge-pumps power supply and a low-dropout transmitter combine to deliver true RS-232 performance from a single +3.3V ~ +5.0V power supply. A guaranteed data rate of 250kbps provides compatibility with popular software for communicating with PCs.

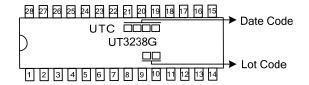

The UTC UT3238 achieves 1µA supply current in shutdown condition. When the UT3238 doesn't detect a valid signal level on its receiver inputs, the on-board power supply and drivers will shutdown, and when a valid level is applied to any RS-232 receiver input, then the system turns on again. Therefore, the system saves power without changes to the existing BIOS or operating system.

The UTC UT3238 requires only $0.1\mu F$ capacitors in 3.3Voperation, and can operate from input voltages ranging from +3.3V ~ +5.0V. It is ideal for 3.3V-only systems, 5.0V-only systems, or mixed 3.3V and 5.0V systems that require true RS-232 performance.

The UTC UT3238 includes one complementary always-active receiver that can monitor an external device (such as a modem) in shutdown, without forward biasing the protection diodes in a UART that may have V_{CC} completely removed.

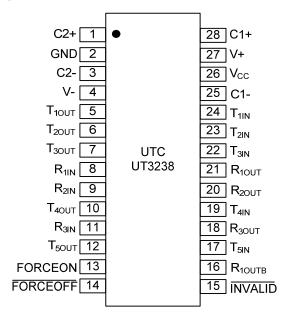

FEATURES

- * Operates With 3.3V~5.0V Power Supply
- * Five Drivers and Three Receivers
- * Operates Up To 250 kbps
- * Designed to Transmit at a Data Rate of 250 kbps
- * Low Standby Current (1µA Typical)
- * External Capacitors (4*0.1µF)
- * Accepts 5.0V Logic Input With 3.3V Supply
- *Always-Active Non-inverting Receiver Output (R_{1OUTB})
- * Serial-Mouse Drivability
- Cwww.flying1688.com * Exceeds ±8KV ESD Protection(HBM) for RS-232 I/O Pins

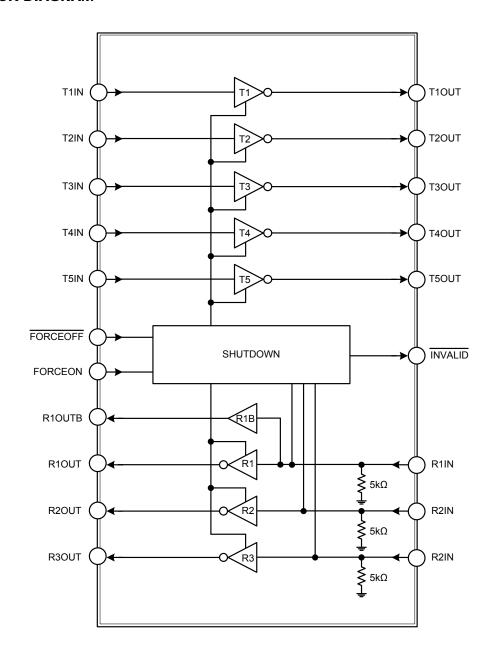


ORDERING INFORMATION

Ordering Number	Package	Packing
UT3238G-P28-R	TSSOP-28	Tape Reel



MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION			
1	C2+	Positive terminal of inverting charge-pump capacitor			
2	GND	Ground			
3	C2-	Negative terminal of inverting charge-pump capacitor			
4	V-	-5.5V generated by the charge pump			
5~7,10,12	T_{XOUT}	RS-232 Transmitter Outputs			
8,9,11	R_{XIN}	RS-232 Receiver Inputs			
13	FORCEON	Drive high to override automatic circuitry keeping transmitters on (FORCEOFF must be high) (Table 2).			
14	FORCEOFF	Drive low to shut down transmitters and on-board power supply. This over-rides all automatic circuitry and FORCEON (Table 2).			
15	INVALID	Output of the valid signal detector. Indicates if a valid RS-232 level is present on receiver inputs logic "1".			
16	R _{1OUTB}	Noninverting Receiver Output—active in shutdown			
17,19,22~24	T_{XIN}	TTL/CMOS Transmitter Inputs			
18,20,21	R_{XOUT}	TTL/CMOS Receiver Outputs			
25	C1-	Negative terminal of the voltage doubler charge-pump capacitor			
26	V_{CC}	+3.3V ~ +5.0V Supply Voltage			
27	V+	+5.5V generated by the charge pump			
28	C1+	Positive terminal of the voltage doubler charge-pump capacitor			

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PAR	AMETER	SYMBOL	RATINGS	UNIT
V _{CC}		V_{CC}	6.0	V
V+ (Note 2)		V+	7.0	V
V- (Note 2)		V-	-7.0	V
V+ + V- (Note 2)		V_{PUMP}	+13.0	V
Input Voltages	T1IN~T5IN, FORCEOFF, FORCEON	V_{IN}	-0.3 ~ +6.0	٧
	R1IN~R3IN		±25	V
T10UT~T50UT			±13.2	V
Output Voltages	R10UT~R30UT,R10UTB, INVALID	V_{OUT}	-0.3 ~ (V _{CC} +0.3)	V
Short-Circuit Duration T10UT ~ T50UT		SC	Continuous	
Power Dissipation(T _A =25°	°C)	P _D	870	mW
Operating Temperature		T _{OPR}	-40 ~ +85	°C
Storage Temperature		T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

(V_{CC} =+3.3 V_{C} +5.0 V_{C} , C1 2 C4=0.1 μ F (Note 2), T_{A} = T_{MIN} to T_{MAX} , unless otherwise specified)

PARAMETER	ER SYMBOL TEST CONDITIONS		MIN	TYP	MAX	UNIT				
DC CHARACTERISTI			I							
Supply Current, Shutdown		I _{SHDN}	All R_IN open, FORCEOFF =V _{CC} , V _{CC} =3.3V FORCEON=GND			1.0	10	μА		
			or 5.0V, T _A = 25°C	FORCE All R_IN	OFF =GN I=GND	D,		1.0	10	μA
Supply Current, Shutdown Disabled		Icc		FORCE no load	ON= FOF	RCEOFF =V _{CC} ,		0.5	2.0	mA
LOGIC INPUTS										
	Low	V_{LGL}	T_IN, FOR	CEON,	FORCEO	FF			8.0	V
Input Logic Threshold			T_IN, FOR	CEON,		$V_{CC} = 3.3V$	2.0			.,
	High	V_{LGH}	FORCEOFF $V_{CC} = 5.0V$		2.4			V		
Input Leakage Current		I _{IN(LK)}	T_IN, FOR	CEON, FORCEOFF			±0.01	±1.0	μA	
RECEIVER OUTPUTS	6									
Output Leakage Curre	nt	I _{ROUT(LK)}	Receivers	disabled				±0.05	±10	μΑ
Output Voltage	Low	V_{ROUTL}	I _{OUT} = 1.6m	ıΑ					0.4	V
Output Voltage	High	V_{ROUTH}	I _{OUT} = -1.0r	I _{OUT} = -1.0mA			V _{CC} - 0.6 V _{CC} - 0.1			V
AUTOSHUTDOWN (F	ORCEON=	GND, FOR	CEOFF =Vc	:c)						
Receiver Input Thresholds to	Enabled	$V_{R(EN)}$	Fig.1			threshold threshold	-2.7		2.7	V
Transmitters	Disabled	V _{R(DIS)}	1µA supply			10, V	-0.3		0.3	V
INVALID Output	Low	V_{INVL}	I _{OUT} =1.6m/	4	X	LAND C			0.4	V
Voltage	High	V _{INVH}	I _{OUT} =-1.0m	A	W T	3600	V _{CC} - 0.6			V
Receiver or Transmitter Edge to Transmitters Enabled		t _{WU}	Fig.2	A EN	, inc	31		25		μs
Receiver or Transmitter Edge to Transmitters Shutdown		t _{AUTOSHDN}	Fig.2	NN.T	\)		15	30	60	S

^{2.} V+ and V- can have maximum magnitudes of 7.0V, but their absolute difference cannot exceed 13.0V.

ELECTRICAL CHARACTERISTICS(Cont.)

 $(V_{CC}$ =+3.3V~+5.0V, C1~C4=0.1µF (Note 2), T_A = T_{MIN} to T_{MAX} , Unless Otherwise Specified)

(VCC=13.3V=13.0V, C1=C	στ σ. ιμι (1		
PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Receiver Positive or Negative Threshold to	High	t _{INVH}	Fig.2			0.1		μs
INVALID	Low	t _{INVL}) '9. <u>~</u>			30		μs
RECEIVER INPUTS								
Input Voltage Range		V_{RR}			-25		25	V
Input Threshold Low		\/	T _A =25°C	V _{CC} =3.3V	0.6	1.2		V
Input Threshold Low		V_{RINL}	1A-25 C	V _{CC} =5.0V	8.0	1.5		V
Input Threshold High		\/	T _A =25°C	V _{CC} =3.3V		1.5	2.4	V
input miesnoid nigh		V _{RINH}	1A-25 C	V _{CC} =5.0V		1.8	2.4	V
Input Hysteresis		V_{RINHYS}				0.3		V
Input Resistance		V _{RINRES}	T _A =25°C		3	5	7	kΩ
TRANSMITTER OUTPU	ГЅ							
Output Voltage Swing		V _{TOUTSW}	All transmitter outputs loaded with $3k\Omega$ to ground			±5.0		٧
Output Resistance		V _{TOUTRES}	V _{CC} = V+=V-=0V, Transmitter output=±2V		300	10M		Ω
Output Short-Circuit Curr	ent	I _{TSC}				±35	±60	mA
Output Leakage Current		I _{TOUT(LK)}	V _{CC} =3.0V~5.0V, V _{OUT} =±12V, Transmitters disabled				±25	μΑ
TIMING CHARACTERIS	TICS							
Maximum Data Rate		DR	$R_L=3k\Omega$, $C_L=1000pF$ switching	one transmitter	250			kbps
Desciver Drenagation De	lev.	t _{PHL}	Receiver input to receiver output, $C_L=150pF$			0.15		
Receiver Propagation De	lay	t _{PLH}				0.15		μs
Receiver Output Time	Enable	t _{R(EN)}	Normal aparation			200		ns
Receiver Output Time	Disable	t _{R(DIS)}	Normal operation			200		ns
Transmitter Skew		t _{TS}	tphl — tplh			100		ns
Receiver Skew		t _{RS}	t _{PHL} - t _{PLH}			50		ns
Transition-Region Slew Rate		SR	V_{CC} =3.3V, T_A =25°C, R_L =3k Ω ~7k Ω ,		6		30	V/µs
		SK	measured from +3V ~ -3V or -3V~+3V	C _L =150pF~2500pF	4		30	V/µs
			•					

Notes: 1. Typical values are at V_{CC} =3.3V or V_{CC} =5.0V, and T_{A} =25°C.

^{2.} Testing supply conditions are C1~C4=0.1 μ F at V_{CC}=3.3V \pm 0.15V; C1~C4=0.22 μ F at V_{CC}=3.3V \pm 0.3V; C1=0.047 μ F and C2~C4=0.33 μ F at V_{CC}=5.0V ± 0.5V.

DETAILED DESCRIPTION

Charge-Pump Voltage Converter

The UTC UT3238 consists of a regulated dual charge pumps that provide output voltages of +5.5V and -5.5V, regardless of the input voltage (V_{CC}) changing from +3.3V to +5.0V.

The charge pumps operate in a discontinuous mode: if the output voltages are less than 5.5V, the charge pumps are enabled; if the output voltages exceed 5.5V, the charge pumps are disabled.

Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies, refer to application circuit.

RS-232 Transmitter

UTC UT3238's transmitters are inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. They guarantee a 250kbps data rate with worst-case loads of $3k\Omega$ in parallel with 1000pF, providing compatibility with PC-to-PC communication software. Typically, the UTC UT3238 can operate at data rates of 235kbps.

Transmitters can be paralleled to drive multiple receivers or mouse. When FORCEOFF is driven to ground, or shutdown circuitry senses invalid voltage levels at all receiver inputs, the transmitters are disabled and the outputs are forced into a high-impedance state.

RS-232 Receiver

The UTC UT3238's receivers convert RS-232 signals to CMOS-logic output levels. All receivers have one inverting three-state output. If the receivers is in shutdown, the outputs of receivers are high impedance.

The UTC UT3238 has an always-active complementary output (R_{10UTB}). R_{10UTB} is an extra output that monitors receiver activity while the other receivers are high impedance. This allows Ring Indicator to be monitored without forward biasing other devices connected to the receiver outputs. This is ideal for systems where Vcc is set to 0V in shutdown to accommodate peripherals.

Table 1. INVALID Control Truth Table

RS-232 SIGNAL PRESENT AT RECEIVER INPUT	INVALID OUTPUT
YES	High
NO	Low

Shutdown Function

A 1µA supply current is achieved with shutdown feature, which operates when FORCEON is low and FORCEOFF is high. When the UTC UT3238 do not sense a valid signal transition on any receiver and transmitter input for 30sec, the on-board charge pumps are shutdown, reducing supply current to 1µA. This occurs if the RS-232 cable is disconnected or the connected peripheral transmitters are turned off. The system turns on again when a valid transition is applied to any RS-232 receiver or transmitter input (Table 2). As a result, the system saves power without changes to the existing BIOS or operating system. NVALID indicates the receiver inputs' condition, when using shutdown function, the INVALID output is high when the device is on and low when the device is shut down.

Table 2. Shutdown Logic Control Truth Table

		-		1	1	1	
FORCEON	FORCEOFF	Auto shutdown			R_OUT	R10UTB	
Х	0	Х	Shutdown(Forced off) High-Z High-Z		High-Z	Active	
1	1	X	Normal Operation(Forced on)	· · · · · · · · · · · · · · · · · · ·		Active	
0	1	<30sec*	Normal Operation(Auto shutdown)	_Active	Active	Active	
0	1	>30sec*	Shutdown(Auto shutdown)	High-Z	Active	Active	
X=Do not care * Time since last receiver or transmitter input transition.							
UNISONIC TECHNOLOGIES CO., LTD					7 of 10		
www.unisonic.com.tw				N-R502-B54a			

^{*} Time since last receiver or transmitter input transition.

DETAILED DESCRIPTION(Cont.)

Figure 1 depicts valid and invalid RS-232 receiver voltage levels. INVALID indicates the receiver input's condition, and is independent of FORCEON and FORCEOFF states.

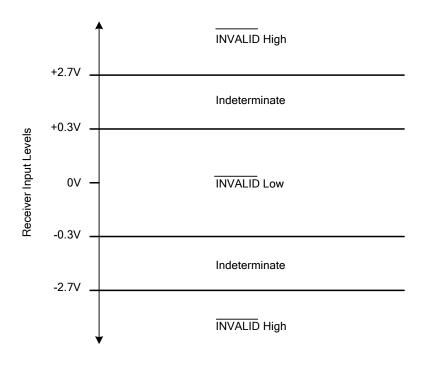
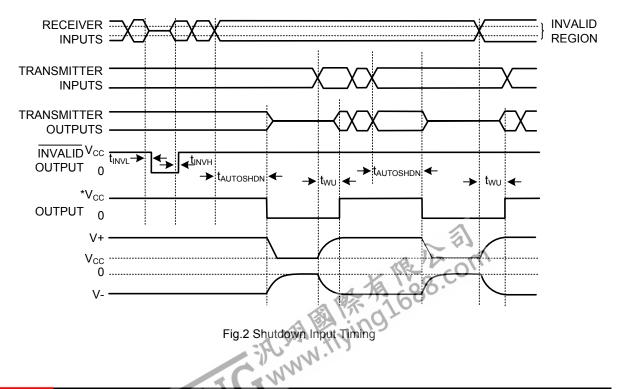



Fig.1 Shutdown Input Levels

When shutdown, the UTC UT3238's charge pumps are turned off, V+ decays to V_{CC} , V- decays to ground, the transmitter output is disabled (high impedance). The time required to exit shutdown is typically 25µs.

■ TYPICAL APPLICATION CIRCUIT

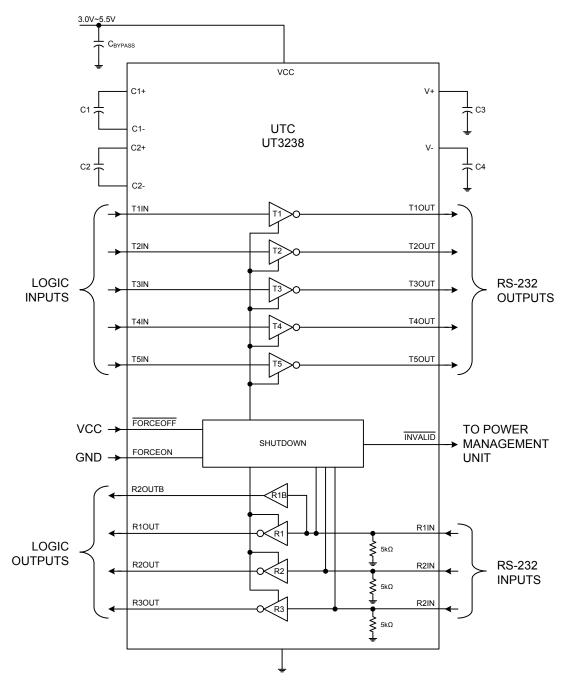


Fig.3 Application Circuit

Table 3. Required Capacitor Value

		100	
V _{CC} (V)	C1 (µF)	C2, C3, C4 (µF)	C _{BYPASS} (µF)
3.0~3.6	0.22	0.22	0.22
3.15~3.6	0.1	1 1 0-1 L	0.1
4.5~5.5	0.047	0.33	0.047
3.0~5.5	0.22	1.0	0.22

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

