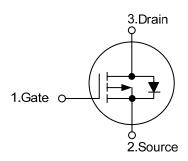
UNISONIC TECHNOLOGIES CO., LTD

UT3419 Power MOSFET

20V, 3.5A P-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

■ DESCRIPTION

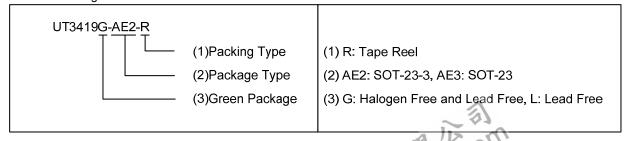

The UTC **UT3419** is a P-channel enhancement MOSFET providing designers with excellent $R_{DS(ON)}$, low gate charge. The gate voltage is as low as 2.5V.

The UTC **UT3419** can be applied in PWM applications or used as a load switch.

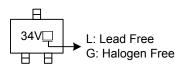
■ FEATURES

- * $R_{DS(ON)} \le 75 \text{m}\Omega$ @ V_{GS} =-10V, I_D =-3.5A
- * $R_{DS(ON)} \le 95m\Omega$ @ V_{GS} =-4.5V, I_{D} =-3.0A
- * $R_{DS(ON)} \le 145 m\Omega$ @ $V_{GS} = -2.8 V$, $I_{D} = -1.0 A$

SYMBOL



3 SOT-23 (EIAJ SC-59)


ORDERING INFORMATION

Ordering Number		Doolsono	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT3419L-AE2-R	UT3419G-AE2-R	SOT-23-3	G	S	D	Tape Reel	
UT3419L-AE3-R	UT3419G-AE3-R	SOT-23	G	S	D	Tape Reel	

Note: Pin Assignment: G: Gate S: Source D: Drain

MARKING

<u>www.unisonic.com.tw</u> 1 of 4

UT3419 Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_A =25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain to Source Voltage		V_{DSS}	-20	V
Gate to Source Voltage		V_{GSS}	±12	V
Continuous Drain Current (Note 1)	T _A =25°C		-3.5	Α
	T _A =70°C	l _D	-2.8	Α
Pulsed Drain Current (Note 2)		I _{DM}	-15	Α
Total Dayyar Dissination (Note 1)	T _A =25°C	D	1.4	W
Total Power Dissipation (Note 1)	T _A =70°C	P_D	0.9	W
Junction Temperature		T_J	-55 ~ + 150	°C
Storage Temperature		T _{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

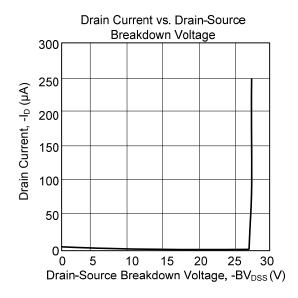
■ THERMAL CHARACTERISTICS

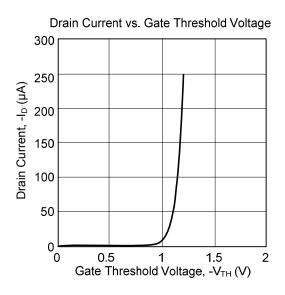
PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient (Note 1)	t ≤ 10s	0	90	°C/W	
	Steady-State	Θ_{JA}	125	°C/W	

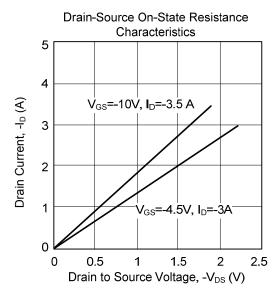
Notes: 1. The value of θ_{JA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

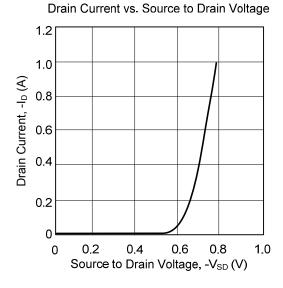
2. Repetitive rating, pulse width limited by junction temperature.

ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV_{DSS}	BV _{DSS} V_{GS} =0V, I_D =-250 μ A				V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =-16V,V _{GS} =0V			-0.5	μA
0.1.0	I _{GSS}	V _{DS} =0V ,V _{GS} =±10V			±100	nA
Gate-Source Leakage Current		V_{DS} =0V , V_{GS} =±12V			±100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	V_{DS} = V_{GS} , I_D =-250 μ A	-0.7	-0.9	-1.4	V
On State Drain Current	$I_{D(ON)}$	V _{GS} =-4.5V, V _{DS} =-5V	-15			Α
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V,I _D =-3.5A		59	75	mΩ
		V _{GS} =-4.5V, I _D =-3A		76	95	mΩ
		V _{GS} =-2.5V, I _D =-1A		111	145	mΩ
Forward Transconductance	g FS	V _{DS} =-5V, I _D =-3.5A		6.8		S
DYNAMIC PARAMETERS				_	_	
Input Capacitance	C _{ISS}	\\ - 40\\\\ -0\\		512	620	pF
Output Capacitance	Coss	V _{DS} =-10V,V _{GS} =0V, -f =1MHz		77		pF
Reverse Transfer Capacitance	C _{RSS}	71 = 11VIM2		62		pF
Gate Resistance	R _G	$V_{GS} = 0V$, $V_{DS} = 0V$, $f = 1MHz$		9.2	13	Ω
SWITCHING PARAMETERS				-		-
Total Gate Charge	Q_G	\(- 40\(\) \(- 45\(\)		5.5	6.6	nC
Gate-Source Charge	Q_GS	V _{DS} =-10V,V _{GS} =-4.5V, I _D =-3.5A		0.8		nC
Gate-Drain Charge	Q_GD	ID3.5A		1.9		nC
Turn-ON Delay Time	$t_{D(ON)}$			5		ns
Turn-ON Rise Time	t_R	V _{DS} =-10V,V _{GS} =-10V,		6.7		ns
Turn-OFF Delay Time	$t_{D(OFF)}$	$R_L=2.8\Omega$, $R_{GEN}=3\Omega$		28		ns
Turn-OFF Fall Time	t_{F}			13.5		ns
SOURCE- DRAIN DIODE RATINGS A	ND CHARAC	CTERISTICS				
Maximum Body-Diode Continuous	Is				-2	Α
Current						
Drain-Source Diode Forward Voltage	V_{SD}	I _S =-1A, V _{GS} =0V	-0.65	-0.81	-0.95	V
Body Diode Reverse Recovery Time	t _{rr}	I _F =-3.5A, dI/dt=100A/μs		9.8	12	ns
Body Diode Reverse Recovery Charge	Q_{rr}	I _F =-3.5A, dI/dt=100A/μs		2.7		nC


Notes: 1. The θ_{JA} is the sum of the thermal impedance from junction to lead θ_{JL} and lead to ambient.




^{2.} These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.