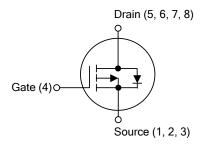


UNISONIC TECHNOLOGIES CO., LTD

UT4407 Preliminary

Power MOSFET

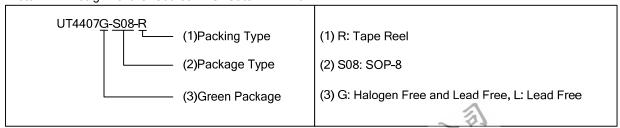
-13A, -30V P-CHANNEL POWER MOSFET

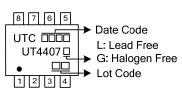

■ DESCRIPTION

UTC **UT4407** is a P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

■ FEATURES

- * $R_{DS(ON)}$ < 9.5 m Ω @ V_{GS} =-10V, I_{D} =-10A $R_{DS(ON)}$ < 15 m Ω @ V_{GS} =-4.5V, I_{D} =-8.0A
- * Improved dv/dt capability
- * Fast switching


■ SYMBOL


■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment								Dooking
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UT4407L-S08-R	UT4407G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: S: Source G: Gate D: Drain

MARKING

SOP-8

www.unisonic.com.tw 1 of 6

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARA	AMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage			V_{DSS}	-30	V	
Gate-Source Voltage			V_{GSS}	±20	V	
	Continuous	$T_C = 25^{\circ}C$	l _D	-13	Α	
Drain Current		T _C = 100°C		-7.8	Α	
	Pulsed (Note	2)	I _{DM}	-52	Α	
Power Dissipation			P_{D}	4.2	W	
Junction Temperature			T_J	+150	°C	
Storage Temperature			T _{STG}	-55 ~ + 150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

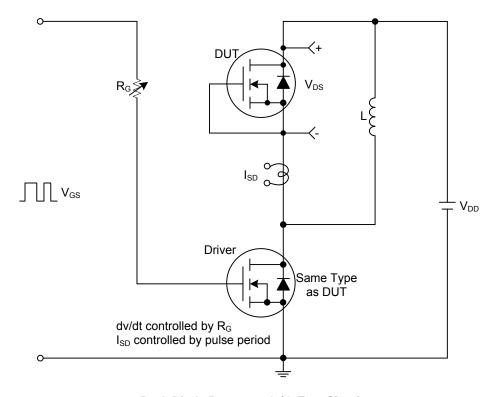
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=0.1mH, I_{AS} =65A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25°C

■ THERMAL DATA

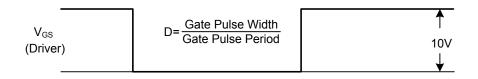
PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	60	°C/W	
Junction to Case	θ _{JC}	30	°C/W	

Note: The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

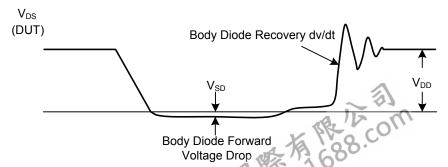
■ **ELECTRICAL CHARACTERISTICS** (T_J =25°C, unless otherwise specified)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltag	e	BV _{DSS}	I _D =250μA, V _{GS} =0V	-30			V
BV _{DSS} Temperature Coefficient		$\triangle BV_{DSS}/\triangle T_{J}$	Reference to 25°C , I _D =1mA		-0.03		V/°C
			V _{DS} =-30V, V _{GS} =0V			-1	μA
Drain-Source Leakage Current		I _{DSS}	V _{DS} =-24V, V _{GS} =0V			-10	μA
Cata Carraga Laglaga Crimont	Forward	,	V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current	Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	-1.0	-1.6	-2.5	V
V _{GS(TH)} Temperature Coefficient		$\triangle V_{GS(TH)}$			4.0		mV/°C
Static Drain-Source On-State Resistance			V _{GS} =10V, I _D =-10A		8.0	9.5	mΩ
Static Drain-Source On-State Re	sistance	R _{DS(ON)}	V_{GS} =4.5V, I_{D} =-8.0A		12.4	15	mΩ
Forward Transconductance		gfs	V _{DS} =10V, I _D =-10A		13		S
DYNAMIC PARAMETERS							
Input Capacitance		C_{ISS}	V _{GS} =0V, V _{DS} =-15V,		3300	4800	pF
Output Capacitance		Coss	f=1.0MHz		410	700	pF
Reverse Transfer Capacitance		C_{RSS}	1-1:01011 12		280	500	pF
Gate resistance		R_G	V_{GS} =0V, V_{DS} =0V, f=1.0MHz		8.5	12	Ω
SWITCHING PARAMETERS							
Total Gate Charge (Note 1)		Q_G	V _{DS} =-15V, V _{GS} =-4.5V,		35	56	nC
Gate to Source Charge		Q_GS	I _D =-10A		10.8	16	nC
Gate to Drain Charge		Q_GD	10-10/4		10.6	16	nC
Turn-on Delay Time (Note 1)		$t_{D(ON)}$			24.5	38	ns
Rise Time		t_R	V _{DD} =-15V, V _{GS} =-10V,		10.5	16	ns
Turn-off Delay Time		$t_{D(OFF)}$	I_D =-1.0A, R_G =6.0 Ω		156.8	230	ns
Fall-Time		t₅			50	75	ns
SOURCE- DRAIN DIODE RATII	NGS AND CH	ARACTERISTI	CS				
Maximum Body-Diode Continuou	us Current	Is	V _G =V _D =0V , Force Current			-13	Α
Maximum Body-Diode Pulsed Co	urrent	I _{SM}	vg-vp-ov , roice current			-26	Α
Drain-Source Diode Forward Vol	Itage (Note 1)	V_{SD}	I _S =-1.0A, V _{GS} =0V			-1.0	V

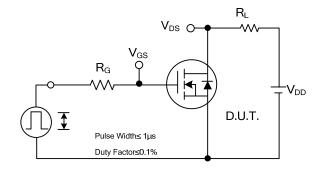
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle≤2%.

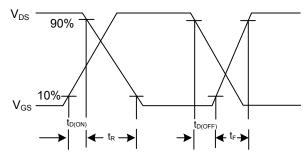



^{2.} Essentially independent of operating temperature.


■ TEST CIRCUITS AND WAVEFORMS

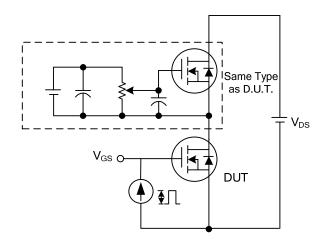
Peak Diode Recovery dv/dt Test Circuit

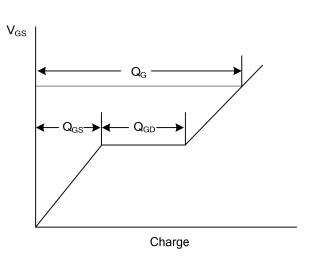




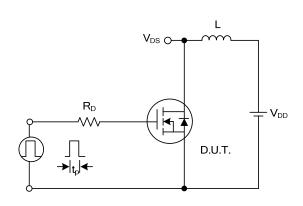
Peak Diode Recovery dv/dt Test Circuit and Waveforms

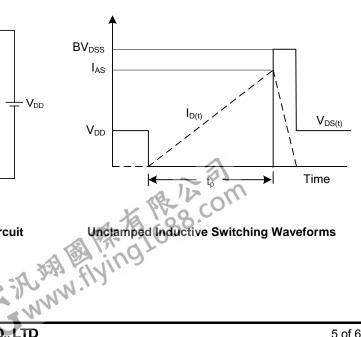
Peak Diode Recovery dv/dt Waveforms


TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

