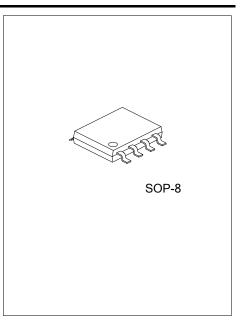
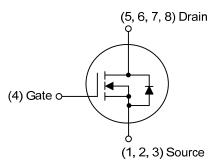


UNISONIC TECHNOLOGIES CO., LTD

UT4466 Preliminary Power MOSFET

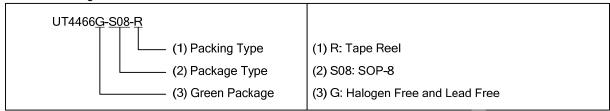

10A, 30V N-CHANNEL ENHANCEMENT MODE MOSFET

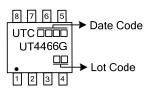
■ DESCRIPTION


The UTC **UT4466** is an N-channel Power FET, it uses UTC's advanced technology to provide customers a minimum on-state resistance, high switching speed and low gate charge.

■ FEATURES

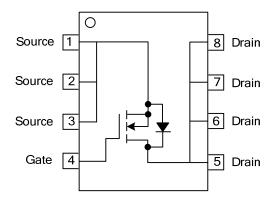
- * $R_{DS(ON)}$ < 15m Ω @ V_{GS} =10V, I_D =10A
- * High switching speed
- * Low gate charge (Typ.=10.5nC)


■ SYMBOL


■ ORDERING INFORMATION

Ordering Number	Package	Pin Assignment							Doolsing	
		1	2	3	4	5	6	7	8	Packing
UT4466G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source



■ MARKING

www.unisonic.com.tw 1 of 6

PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

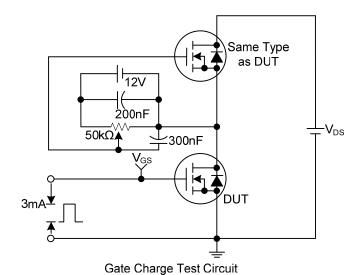
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Volt	age	V_{DSS}	$V_{\rm DSS}$ 30		
Gate-Source Volta	Source Voltage		±25	V	
Drain Current	T _A =25°C	- I _D	10	Α	
	Continuous(Note 2) $\frac{T_A=25^{\circ}C}{T_A=85^{\circ}C}$		6	Α	
	Pulsed (Note 3)	I _{DM}	60	Α	
Avalanche Curren	t (Note 3, 4)	I _{AR}			
Repetitive Avalance	ve Avalanche Energy (Note 3, 4) L=0.1mH E _{AR} 12.8		12.8	mJ	
Power Dissipation	(Note 2)	P_{D}			
Junction Tempera	unction Temperature		-55~+150	°C	
Storage Temperature Range		T _{STG}	-55~+150	°C	

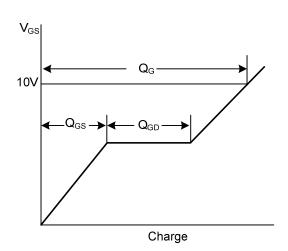
- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Device mounted on FR-4 substrate PC board with minimum recommended pad layout in a still air environment @ T_A =25°C. The value in any given application depends on the user's specific board design.
 - 3. Repetitive rating, pulse width limited by junction temperature.
 - 4. I_{AR} and E_{AR} rating are based on low frequency and duty cycles to keep T_J=25°C

■ THERMAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

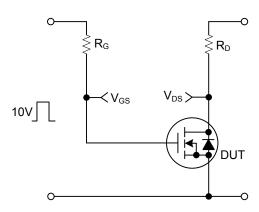
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note 1)	θ_{JA}	88.4	°C/W

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

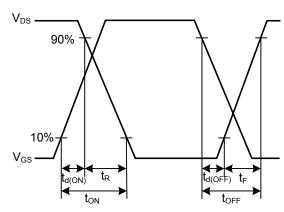

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS (Note 1)								
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	30			V	
Drain-Source Leakage Current		I _{DSS}	V _{DS} =30V, V _{GS} =0V			1	μA	
Gate-Source Leakage Current	Forward		V _{GS} =+25V, V _{DS} =0V			+100	nA	
	Reverse	I_{GSS}	V _{GS} =-25V, V _{DS} =0V			-100	nA	
ON CHARACTERISTICS (Note 1)								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.45	2.4	V	
Static Drain-Source On-State Resist	ociatanaa	R _{DS(ON)}	V _{GS} =10V, I _D =10A		15	23	mΩ	
	esistance		V _{GS} =4.5V, I _D =7.5A		25	33	mΩ	
Forward Transfer Admittance		Y _{FS}	V_{DS} =5V, I_D =10A		2.5		S	
DYNAMIC PARAMETERS (Not	e 2)							
Input Capacitance		C _{ISS}			478.9		pF	
Output Capacitance Reverse Transfer Capacitance		Coss	V_{GS} =0V, V_{DS} =15V, f=1.0MHz		96.7		pF	
		C_{RSS}			61.4		pF	
SWITCHING PARAMETERS								
Gate Resistance		R_G	V _{DS} =0V, V _{GS} =0V, f=1MHz	0.4	1.1	1.6	Ω	
Total Gate Charge		Q_G	V_{GS} =4.5V, V_{DS} =15V, I_{D} =10A		5.0	8	nC	
Total Gate Charge		Q_G			10.5	17	nC	
Gate to Source Charge		Q_GS	V _{GS} =10V, V _{DS} =15V, I _D =10A		1.8		nC	
Gate to Drain Charge		Q_{GD}	4		1.6		nC	
Turn-ON Delay Time		t _{D(ON)}	115		2.9		ns	
Rise Time Turn-OFF Delay Time Fall-Time		t _R	V_{DS} =15V, V_{GS} =10V, R_{G} =3 Ω ,	\mathcal{I}_{II} .	7.9		ns	
		t _{D(OFF)}	R _L =1.5Ω		14.6		ns	
		t _F	(学) 100		3.1		ns	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Drain-Source Diode Forward Vo	ltage	V _{SD}	I _S =1A, V _{GS} =0V		0.69	1	V	

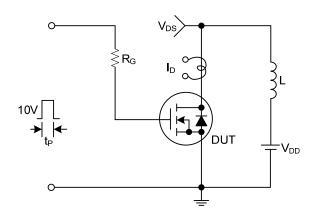

Notes: 1. Short duration pulse test used to minimize self-heating effect.

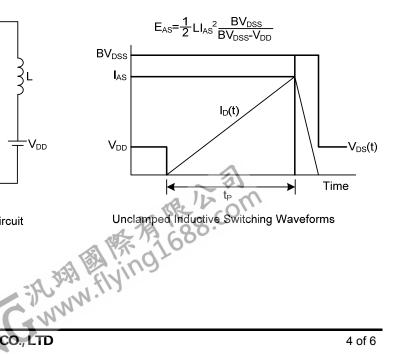
2. Guaranteed by design. Not subject to production testing.

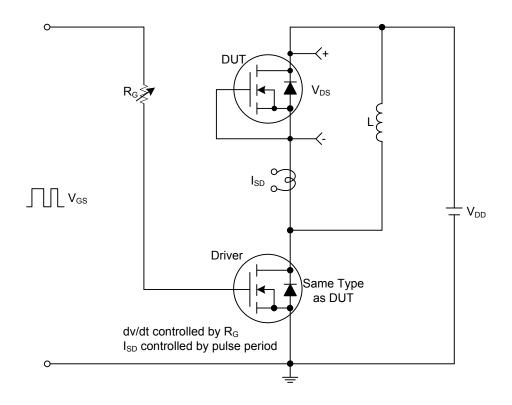


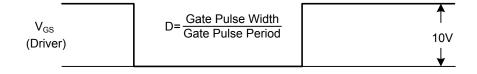
TEST CIRCUITS AND WAVEFORMS

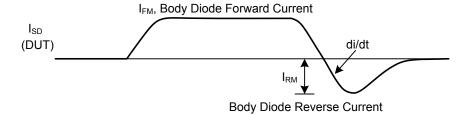


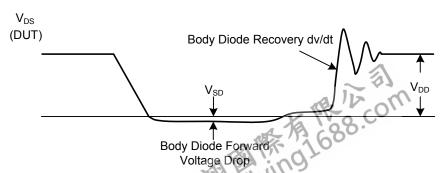

Gate Charge Waveforms


Resistive Switching Test Circuit


Resistive Switching Waveforms




Unclamped Inductive Switching Test Circuit



■ TEST CIRCUITS AND WAVEFORMS(Cont.)

Peak Diode Recovery dv/dt Test Circuit and Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.