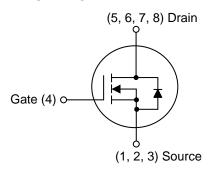


UTC UNISONIC TECHNOLOGIES CO., LTD

UT7410 Preliminary Power MOSFET

30V, 24A N-CHANNEL **ENHANCEMENT MODE POWER MOSFET**

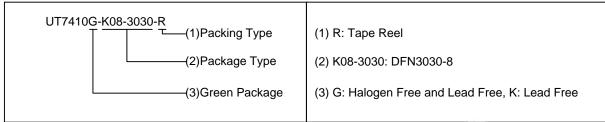
DESCRIPTION


The UTC UT7410 is an N-channel enhancement MOSFET, it uses UTC's advanced technology to provide the customers with perfect $R_{DS(ON)}$ and low gate charge.

The UTC UT7410 is suitable for Load Switch and DC-DC converters applications, etc.

FEATURES

* $R_{DS(ON)} \le 17 \text{ m}\Omega @ V_{GS}=10V, I_{D}=8.0A$ $R_{DS(ON)} \le 26 \text{ m}\Omega @ V_{GS}=4.5\text{V}, I_D=7.0\text{A}$


SYMBOL

ORDERING INFORMATION

Ordering Number		Daalaaaa	Pin Assignment							Daaldaa	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UT7410L-K08-3030-R	UT7410G-K08-3030-R	DFN3030-8	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

DFN3030-8

www.unisonic.com.tw 1 of 6

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	30	V	
Gate-Source Voltage		V_{GSS}	±20	V	
II)rain Current	Continuous (Note 2) T _C =25°C		I _D	24	Α
	Pulsed (Note 3)		I _{DM}	40	Α
Power Dissipation (Note 2) T _C =25°C		P _D	20	W	
Junction Temperature		T_J	-55 ~ + 150	ô	
Storage Temperature Range			T _{STG}	-55 ~ +150	ô

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

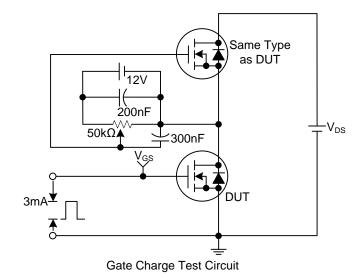
■ THERMAL DATA

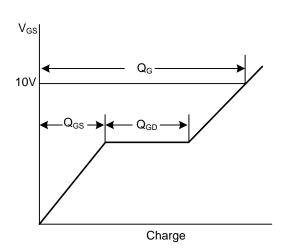
PARAMETER	SYMBOL	RATINGS	UNIT		
Junction to Ambient (Note 1)	Steady-State	θ_{JA}	60	°C/W	
Junction to Case (Note 2)	Steady-State	θјς	6.25	°C/W	

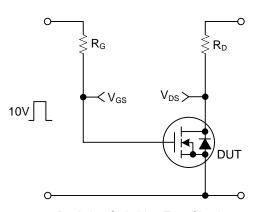
Notes: 1. The value of θ_{JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The Power dissipation P_{DSM} is based on θ_{JA} t≤10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.

- 2. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- 3. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.

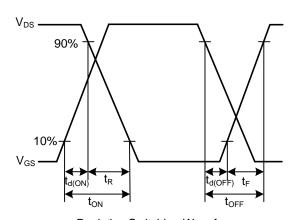
■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

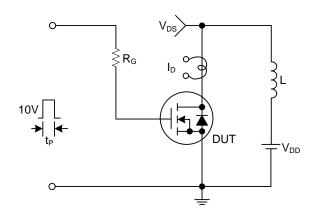

PARAMETER		SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV_{DSS}	$I_D=250\mu A, V_{GS}=0V$	30			V
Drain-Source Leakage Current		I _{DSS}	V_{DS} =30V, V_{GS} =0V			1	μΑ
Gate-Source Leakage Current	Forward		V _{GS} =+20V, V _{DS} =0V			+100	nΑ
	Reverse	I_{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.4	1.8	2.5	V
Static Drain-Source On-Resistance		R _{DS(ON)}	V_{GS} =10V, I_D =8.0A		13	17	mΩ
			V _{GS} =4.5V, I _D =7.0A		22	26	mΩ
On State Drain Current		I _{D(ON)}	V _{GS} =10V, V _{DS} =5V	40			Α
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			421		pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =15V, f=1.0MHz		110		pF
Reverse Transfer Capacitance		C_{RSS}			92		pF
Gate resistance		R_{G}	V _{GS} =0V, V _{DS} =0V, f=1.0MHz		4	4.9	Ω
SWITCHING PARAMETERS							
Total Gate Charge	10V	Q_G			13		nC
	4.5V		V 40V V 45V L 20A		7		nC
Gate to Source Charge		Q_GS	V_{GS} =10V, V_{DS} =15V, I_{D} =20A		1.8		nC
Gate to Drain Charge		Q_{GD}			3		nC
Turn-ON Delay Time		t _{D(ON)}			5		ns
Rise Time		t_R	V _{GS} =10V, V _{DS} =15V, I _D =20A,		14		ns
Turn-OFF Delay Time		t _{D(OFF)}	R _{GEN} =3Ω		13		ns
Fall-Time		t_{F}			22		ns
SOURCE- DRAIN DIODE RATII	NGS AND C	CHARACTER	ISTICS				
Maximum Body-Diode Continuous Current		Is				1.7	Α
Drain-Source Diode Forward Voltage		V_{SD}	I _S =1A, V _{GS} =0V		0.75	1	V

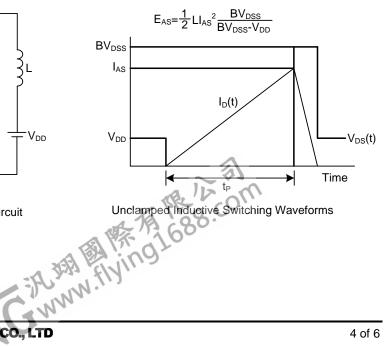

Notes: 1. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%.

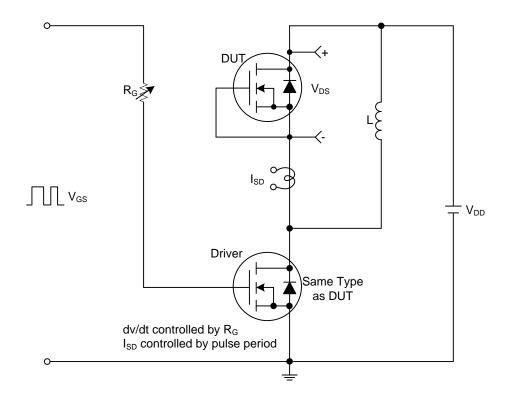

^{2.} Essentially independent of operating ambient temperature.

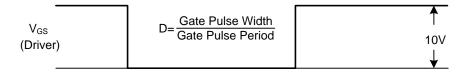
TEST CIRCUITS AND WAVEFORMS

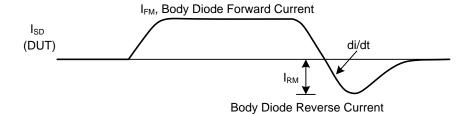


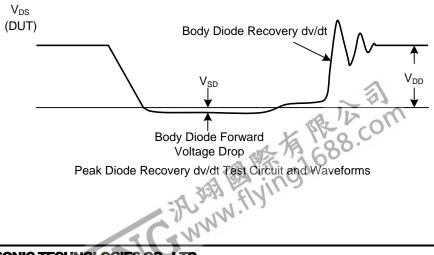

Gate Charge Waveforms


Resistive Switching Test Circuit


Resistive Switching Waveforms




Unclamped Inductive Switching Test Circuit



TEST CIRCUITS AND WAVEFORMS

Peak Diode Recovery dv/dt Test Circuit and Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.