

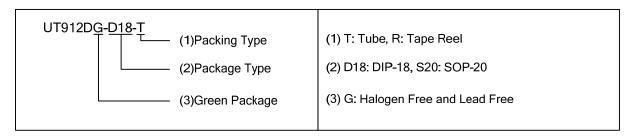
# UNISONIC TECHNOLOGIES CO., LTD

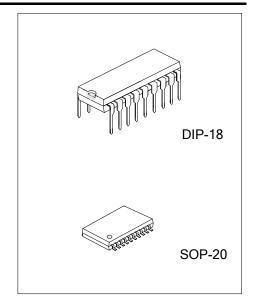
**UT912D** CMOS IC

## **DECODERS FOR REMOTF** CONTROLLER

#### **DESCRIPTION**

The UTC UT912D of CMOS LSIs for remote control system applications are paired with UTC UT912E (refer to the encoder/decoder cross reference table) and is capable of decoding information which consists of N address bits and 12-N data bits. For proper operation, a pair of encoder/decoder with the same number of addresses and data format should be chosen. The UTC UT912D also is arranged to provide 8 address bits and 4 data bits.


The decoders receive serial addresses and data from a programmed UTC UT912E of encoders that are transmitted together with the header bits by a RF or an infrared transmission medium upon receipt of a trigger signal. If no error or unmatched codes are found, the input data codes are decoded and then transferred to the output pins. The V<sub>T</sub> pin also goes high to indicate a valid transmission.


## **FEATURES**

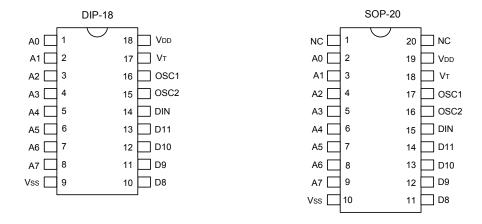
- \* Pair with UTC UT912E
- \* Operating voltage: 2.4V ~ 12V
- \* Low power and high noise immunity CMOS technology
- \* Low standby current
- \* Built-in oscillator needs only 5% resistor
- \* Binary address setting
- \* Received codes are checked 3 times
- \* Capable of decoding 12 bits of information
- \* Address/Data number combination: 8 address bits and 4 data hits
- \* Vaild transmission indicator
- \* Minimal external components

#### ORDERING INFORMATION

| Ordering Number | Package | Packing   |
|-----------------|---------|-----------|
| UT912DG-D18-T   | DIP-18  | Tube      |
| UT912DG-S20-R   | SOP-20  | Tape Reel |



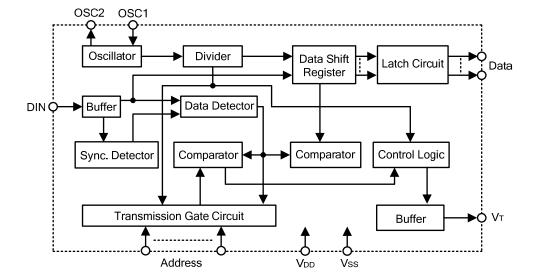



## ■ MARKING

| Packing | MARKING                                                             |
|---------|---------------------------------------------------------------------|
| DIP-18  | 18   7   6   6   14   13   12   11   10                             |
| SOP-20  | 20 19 18 17 16 15 14 13 12 11  UTC □□□□□  UT912DG  ■ □□□□  Lot Code |

## ■ ENCODER/DECORDER CROSS REFERENCE TABLE

| Deceder Port No  | Data Dina | Address Dine | \            | Pair Encoder  |           | Packa     | ge     |        |
|------------------|-----------|--------------|--------------|---------------|-----------|-----------|--------|--------|
| Decoder Part No. | Data Pins | Address Pins | VT           | Pall Elicodel | Enc       | oder      | Dec    | oder   |
| UTC UT912D       | 4         | 8            | $\checkmark$ | UTC UT912E    | DIP-14/18 | SOP-16/20 | DIP-18 | SOP-20 |


## ■ PIN CONFIGURATION



## ■ PIN DESCRIPTION

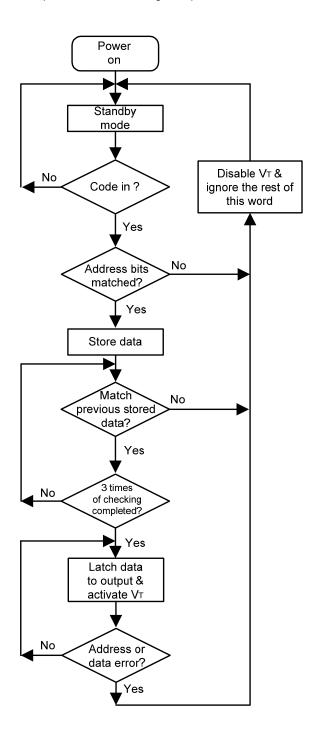
| PIN NAME | I/O | INTERNAL CONNECTION    | DESCRIPTION                                                                                               |  |  |  |
|----------|-----|------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| A0 ~ A7  | ı   | NMOS Transmission Gate | Input pins for address A0 ~ A7 setting, these pins can be externally set to V <sub>SS</sub> or left open. |  |  |  |
| D8 ~ D11 | 0   | CMOS OUT               | Output data pins, power-on state is low.                                                                  |  |  |  |
| DIN      | -   | CMOS IN                | Serial data input pin                                                                                     |  |  |  |
| $V_T$    | 0   | CMOS OUT               | Valid transmission, active high                                                                           |  |  |  |
| OSC1     |     | Oscillator             | Oscillator input pin                                                                                      |  |  |  |
| OSC2     | 0   | Oscillator             | Oscillator output pin                                                                                     |  |  |  |
| $V_{SS}$ |     |                        | Negative power supply, (GND)                                                                              |  |  |  |
| $V_{DD}$ |     |                        |                                                                                                           |  |  |  |

## ■ BLOCK DIAGRAM



## ■ ABSOLUTE MAXIMUM RATINGS

| PARAMETER             | SYMBOL           | RATINGS                        | UNIT |
|-----------------------|------------------|--------------------------------|------|
| Supply Voltage        | $V_{DD}$         | -0.3 ~ +13                     | V    |
| Input Voltage         | $V_{IN}$         | Vss-0.3 ~ V <sub>DD</sub> +0.3 | V    |
| Operating Temperature | $T_{OPR}$        | -20 ~ +85                      | °C   |
| Storage Temperature   | T <sub>STG</sub> | -40 ~ +150                     | °C   |

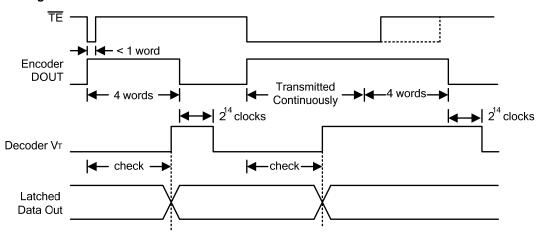

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

## ■ ELECTRICAL CHARACTERISTICS (T<sub>A</sub>=25°C, V<sub>DD</sub>=5V, unless otherwise specified.)

| PARAMETER SYMBOL              |                               | TEST CO                        | MIN                                  | TYP                            | MAX | UNIT   |    |     |  |
|-------------------------------|-------------------------------|--------------------------------|--------------------------------------|--------------------------------|-----|--------|----|-----|--|
| Operating Voltage             |                               | $V_{OPR}$                      |                                      |                                | 2.4 | 5      | 12 | V   |  |
| Standby Current               |                               |                                | 0:                                   | V <sub>DD</sub> =5V            |     | 0.1    | 1  | μΑ  |  |
| Standby Current               |                               | I <sub>STN-BY</sub>            | Oscillator stops                     | V <sub>DD</sub> =12V           |     | 2      | 4  |     |  |
| Operating Current             | I <sub>OPR</sub>              | No load, f <sub>OSC</sub> =150 |                                      | 159                            | 400 | μΑ     |    |     |  |
| Data Outrat Oursant (DO D44)  |                               | I <sub>DOUT</sub>              | \/ -5\/                              | V <sub>OH</sub> =4.5V (Source) | -1  | -1.99  |    | m 1 |  |
| Data Output Current (L        | Data Output Current (D8~D11)  |                                | $V_{DD}$ =5V $V_{OL}$ =0.5V (Sink)   |                                | 1   | 1.9    |    | mA  |  |
| V Output Current              |                               | I <sub>VT</sub>                | \/ -5\/                              | V <sub>OH</sub> =4.5V (Source) | -1  | -1.564 |    |     |  |
| V <sub>T</sub> Output Current | V <sub>⊤</sub> Output Current |                                | V <sub>DD</sub> =5V                  | V <sub>OL</sub> =0.5V (Sink)   | 1   | 1.53   | mA |     |  |
| Innut \/altaga                | High                          | $V_{IH}$                       |                                      |                                | 3.5 |        | 5  | V   |  |
| Input Voltage                 | Low                           | $V_{IL}$                       |                                      | _                              | 0   |        | 1  | V   |  |
| Oscillator Frequency for      |                               |                                | $R_{osc}$ =51K $\Omega$ , $V_{DD}$ = | 5V                             |     | 149    |    | kHz |  |

## ■ OPERATION FLOWCHART

The oscillator is disabled in the standby state and activated when a logic "high" signal applies to the DIN pin. That is to say, the DIN should be kept low if there is no signal input.

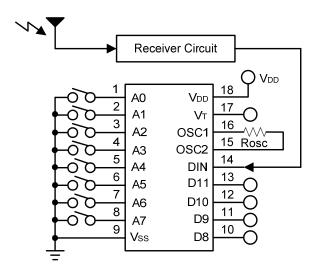



## ■ FUNCTIONAL DESCRIPTION

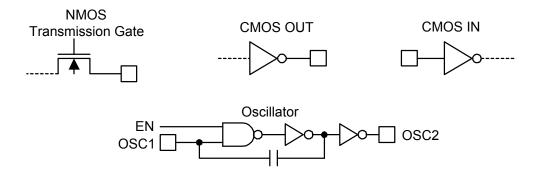
## Operation

The UTC **UT912D** offers different packages by various combinations of addresses and data pins to pair with the UTC **UT912E**. The decoders receive data that are transmitted by an encoder and interpret the first N bits of code period as addresses and the last 12-N bits as data, where N is the address code number. A signal on the DIN pin activates the oscillator, which in turn decodes the incoming address and data. The decoders will then check the received address three times continuously. If the received address codes all match the contents of the decoder-s local address, the 12-N bits of data are decoded to activate the output pins and the  $V_T$  pin is set high to indicate a valid transmission. This will last unless the address code is incorrect or no signal is received. The output of the  $V_T$  pin is high only when the transmission is valid. Otherwise it is always low.

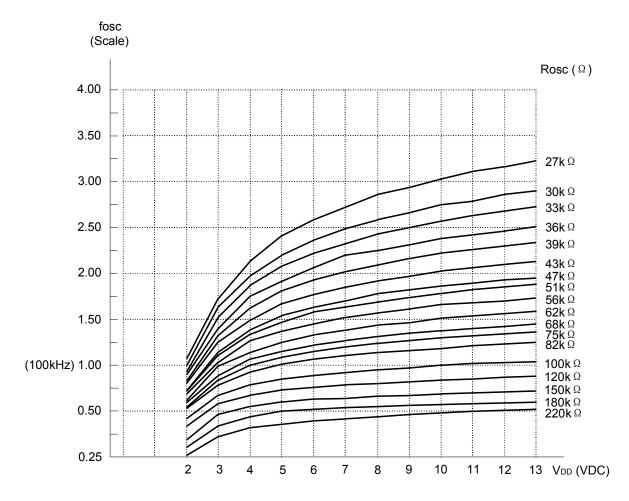
## **Decoder timing**




## Address/Data sequence


The following provides the address/data sequence table for various models of the UTC UT912D. The correct device should be selected according to the individual address and data requirements.

| Bits             | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10  | 11  |
|------------------|----|----|----|----|----|----|----|----|----|----|-----|-----|
| Address/<br>Data | A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | D8 | D9 | D10 | D11 |


APPLICATION CIRCUITS



■ APPROXIMATE INTERNAL CONNECTION CIRCUITS



## OSCILLATOR FREQUENCY VS SUPPLY VOLTAGE



Note: The recommended oscillator frequency is  $f_{OSCD}$  (decoder) $\cong$ 50  $f_{OSCE}$  (UTC UT912E encoder)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.