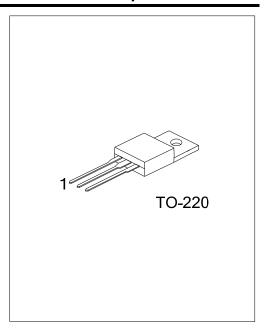
UNISONIC TECHNOLOGIES CO., LTD

UG1N120

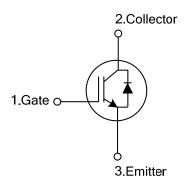
Preliminary

Insulated Gate Bipolar Transistor

5.3A, 1200V NPT SERIES N-CHANNEL IGBT


DESCRIPTION

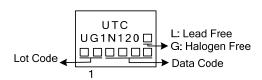
The UTC UG1N120 is a NPT series N-Channel IGBT, it uses UTC's advanced technology to provide the customers with a minimum on-state resistance, etc.


The UTC UG1N120 is suitable for AC and DC motor controls, power supplies, and drivers for solenoids, relays and contactors, etc.

FEATURES

- * Low conduction loss
- * Short circuit rating

SYMBOL



ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Packing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UG1N120L-TA3-T	UG1N120G-TA3-T	TO-220	G	С	Е	Tube	

E: Emitter Pin Assignment: G: Gate Note: C: Collector (1) T: Tube (1)Packing Type (2)Package Type (2) TA3: TO-220 (3)Green Package (3) L: Lead Free, G: Halogen Free and Lead Free

MARKING

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATING (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Collector to Emitter Voltage		BV _{CES}	1200	V
Gate to Emitter Voltage Continuous		V_{GES}	±20	٧
Gate to Emitter Voltage Pulsed		V_{GEM}	±30	V
Collector Current Continuous	T _C =25°C	- I _C	5.3	Α
	T _C =110°C		2.7	Α
Collector Current Pulsed (Note 1)		I _{CM}	6	Α
Power Dissipation Total at T _C =25°C		P_D	60	W
Power Dissipation Derating T _C >25°C			0.476	W/°C
Forward Voltage Avalanche Energy (Note 2)		E _{AV}	10	mJ
Short Circuit Withstand Time (Note 3) at V _{GE} =15V		t _{sc}	8	μs
Short Circuit Withstand Time (Note 3) at V _{GE} =12V		t _{SC}	13	μs
Operating Junction Temperature Range		TJ	-55~+150	°C
Storage Temperature Range		T _{STG}	-55~+150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Pulse width limited by maximum junction temperature.
- 3. I_{CE} =7A, L=400 μ H, V_{GE} =15V, T_{J} =25°C.
- 4. $V_{CE(PK)}$ =840V, T_J =125°C, R_G =82 Ω .

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Case	θ_{JC}	2.1	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Collector to Emitter Breakdown Voltage	BV _{CES}	I _C =250μA, V _{GE} =0V		1200			V
Emitter to Collector Breakdown Voltage	BV _{ECS}	I _C =10mA, V _{GE} =0V		15			V
		V _{CE} =1200V	T _C =25°C			250	μΑ
Collector to Emitter Leakage Current	I _{CES}		T _C =125°C		20		μΑ
			T _C =150°C			1.0	mA
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I _C =1.0A, V _{GE} =15V	T _C =25°C		2.5	2.9	V
			T _C =150°C		3.8	4.3	V
Gate to Emitter Threshold Voltage	$V_{GE(TH)}$	I_C =50 μ A, V_{CE} = V_{GE}		6.0	7.1		V
Gate to Emitter Leakage Current	I _{GES}	V _{GE} =±20V				±250	nA
Switching SOA	SSOA	T_J =150°C, R_G =82 Ω , V_{GE} =15V, L=2mH, $V_{CE(PK)}$ =1200V		6			Α
Gate to Emitter Plateau Voltage	V_{GEP}	I _C =1.0A, V _{CE} =600V			9.2		V
On-State Gate Charge	Q _{G(ON)}	I _C =1.0A, V _{CE} =600V	V _{GE} =15V		14	20	nC
On-State Gate Charge			V _{GE} =20V		15	21	nC
Current Turn-On Delay Time	t _{d(ON)I}	-IGBT and Diode at T_J =25°C -I _{CE} =1.0A, V_{CE} =30V, V_{GE} =15V, -R _G =82Ω			200		ns
Current Rise Time	t _{rl}				470		ns
Current Turn-Off Delay Time	t _{d(OFF)I}				118		ns
Current Fall Time	t _{fl}				200		ns

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

