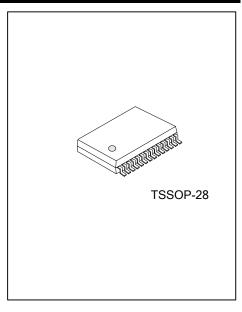


Preliminary

LINEAR INTEGRATED CIRCUIT

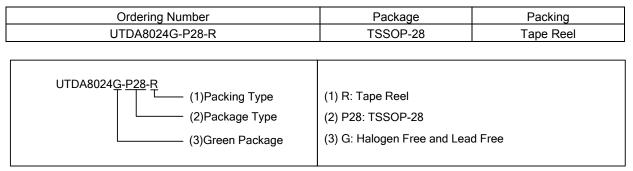

IC CARD INTERFACE

DESCRIPTION

The UTC UTDA8024 is analog interface IC for 3V or 5V smart cards. It is placed between the card and the microcontroller to perform communication, control function, all supply and protection functions. It requires very few external components for application. It can be applied in many fields, such as IC card readers for banking, pay TV, Identification, Electronic payment, etc.

FEATURES

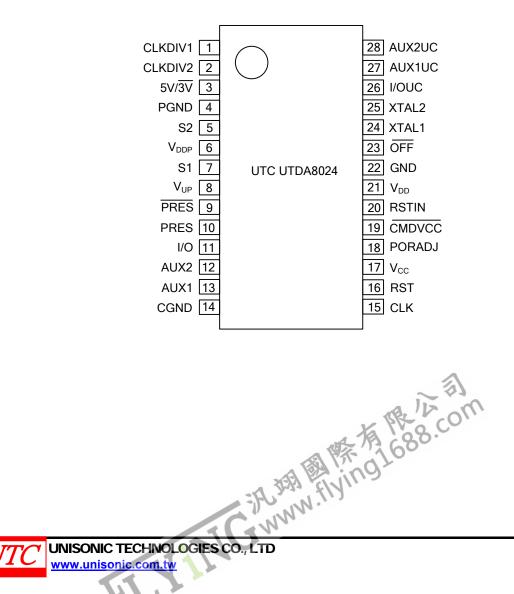
- * Three specifically protected half-duplex bidirectional buffered I/O lines to card contacts C4, C7 and C8
- * Automatic activation and deactivation sequences; initiated by software or by hardware in the event of a short-circuit, card take-off, overheating, V_{DD} or V_{DDP} drop-out
- * 26MHz integrated crystal oscillator
- * DC/DC converter for V_{CC} generation separately powered from a 5 V ± 20% supply (V_{DDP} and PGND)
- * 3V or 5V \pm 5% regulated card supply voltage (V_{CC}) with appropriate decoupling has the following capabilities:
 - I_{CC}<80mA at V_{DDP}=4~6.5V
 - Handles current spikes of 40nAs up to 20MHz
 - Controls rise and fall times
- Filtered overload detection at approximately 120mA
- * Built-in debounce on card presence contacts
- * Supply supervisor for spike-killing during power-on and power-off and Power-on reset (threshold fixed internally or externally by a resistor bridge)
- * Thermal and short-circuit protection on all card contacts
- * Clock generation for cards up to 20MHz (divided by 1, 2, 4 or 8 through CLKDIV1 and CLKDIV2 signals) with synchronous frequency changes
- * Non-inverted control of RST via pin RSTIN
- * ISO 7816, GSM11.11 and EMV (payment systems) Compatibility
- * Enhanced ESD protection on card side (>6kV)
- * One multiplexed status signal OFF



Gwww.thying1688.com www.unisonic.com.tw Copyright © 2015 Unisonic Technologies Co., Ltd

Preliminary

LINEAR INTEGRATED CIRCUIT


ORDERING INFORMATION

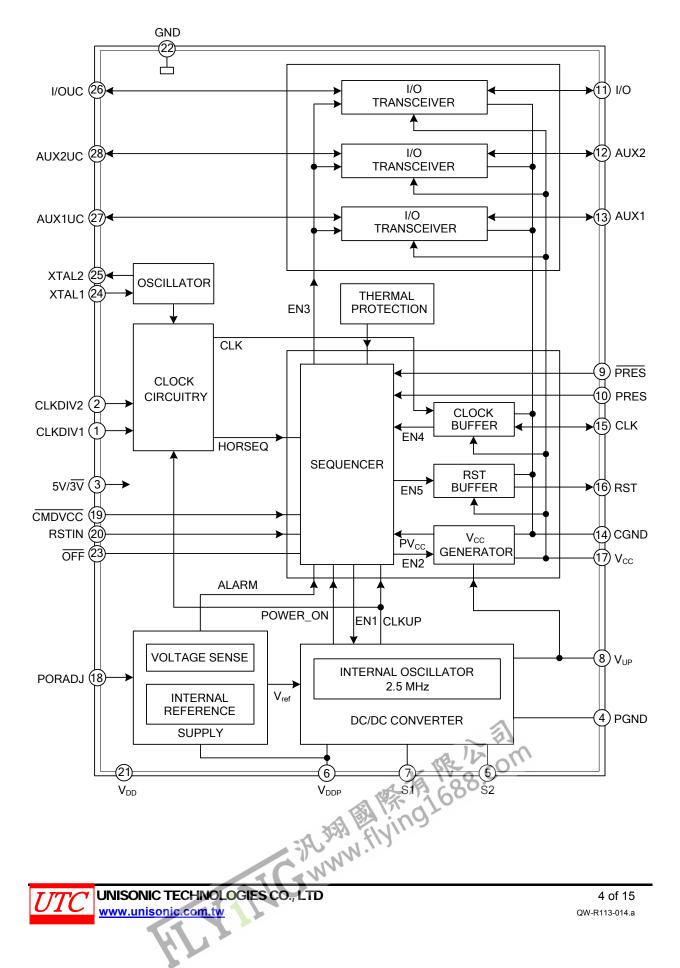
MARKING

PIN CONFIGURATION

Preliminary

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	CLKDIV1	CLK frequency selection input 1
2	CLKDIV2	CLK frequency selection input 2
3	5V/ 3V	Card supply voltage selection input; V_{CC} =5V (HIGH) or V_{CC} =3V (LOW)
4	PGND	DC/DC converter power supply ground
5	S2	DC/DC converter capacitor; connected between pins S1 and S2; C=100nF with ESR<100m Ω
6	V _{DDP}	DC/DC converter power supply voltage
7	S1	DC/DC converter capacitor; connected between pins S1 and S2; C=100nF with ESR<100m Ω
8	V _{UP}	DC/DC converter output decoupling capacitor connection; C=100nF with ESR<100mW must be connected between VUP and PGND
9	PRES	Card presence contact input (active LOW); if PRES or PRES is active, the card is considered 'present' and a built-in debounce feature of 8 ms (typ.) is activated
10	PRES	Card presence contact input (active HIGH); if PRES or PRES is active, the card is considered 'present' and a built-in debounce feature of 8 ms (typ.) is activated
11	I/O	Data line to/from card reader contact C7; integrated $11k\Omega$ pull-up resistor to V _{CC}
12	AUX2	Data line to/from card reader contact C8; integrated 11k Ω pull-up resistor to V _{CC}
13	AUX1	Data line to/from card reader contact C4; integrated $11k\Omega$ pull-up resistor to V _{CC}
14	CGND	Card signal ground
15	CLK	Card clock to/from card reader contact C3
16	RST	Card reset output from card reader contact C2
17	V _{CC}	Card supply voltage to card reader contact C1; decoupled to CGND via 2 × 100nF or 100+220nF capacitors with ESR<100m Ω ; Note 1
18	PORADJ	Power-on reset threshold adjustment input for changing the reset threshold with an external resistor bridge; doubles the width of the POR pulse when used
19	CMDVCC	Input from the host to start activation sequence (active LOW)
20	RSTIN	Card reset input from the host
21	V _{DD}	Supply voltage
22	GND	Ground
23	OFF	NMOS interrupt output to the host (active LOW); 20k Ω integrated pull-up resistor to V _{DD}
24	XTAL1	Crystal connection or input for external clock
25	XTAL2	Crystal connection (leave open-circuit if external clock source is used)
26	I/OUC	Host data I/O line; integrated $11k\Omega$ pull-up resistor to V _{DD}
27	AUX1UC	Auxiliary data line to/from the host; integrated $11k\Omega$ pull-up resistor to V _{DD}
28	AUX2UC	Auxiliary data line to/from the host; integrated 11 k Ω pull-up resistor to V _{DD}


Note 1. The noise margin on V_{CC} will be higher with the 220nF capacitor

Preliminary

LINEAR INTEGRATED CIRCUIT

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARA	METER	SYMBOL	RATINGS	UNIT	
Supply Voltage		V _{DD}	-0.3~+6.5	V	
DC/DC Converter Supply Voltage	9	V _{DDP}	-0.3~+6.5	V	
Voltage On Input and Output Pins	Pins XTAL1, XT/ RSTIN, AUX1UC I/OUC, CLKDIV1 CMDVCC, OFF	C, AUX2UC,	VI, Vo	-0.3~+6.5	v
Voltage On Card Pins	Pins PRES, PR		V _{CARD}	-0.3~+6.5	V
Voltage On Other Pins	Pins V _{UP} , S1 and	I S2	V _N	-0.3~+6.5	V
Electrostatic Discharge Voltage	Card Contacts in Typical Application (Note 2) Pins I/O, RST, V _{CC} , AUX1, AUX2, CLK, PRES and PRES		V _{ESD}	-6~+6	kV
	All Pins (Note 2)	Human Body Model Machine Model		-2~+2 -200~+200	kV V
Maximum Junction Temperature	L	T _{J(MAX)}	150	°C	
Storage Temperature			T _{STG}	-55~+150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. All card contacts are protected against any short-circuit with any other card contact.

THERMAL RESISTANCES CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	in Free Air	θ _{JA}	100	K/W

Preliminary

ELECTRICAL CHARACTERISTICS

V_{DD}=3.3V; V_{DDP}=5V; T_{AMB}=25°C; f_{XTAL}=10MHz; all currents flowing into the IC are positive; see Note 1; unless otherwise specified.

otherwise specified.			N 41N 1	T\/D	NANY	1.16.11-
PARAMETER Temperature	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Ambient Temperature	T _{AMB}		-25		+85	°C
Supplies	I I AMB		-20	I	.00	
Supply Voltage	V _{DD}		2.7		6.5	V
		V _{CC} =5V, I _{CC} <50mA	4.0	5.0	6.5	V
DC/DC Converter Supply Voltage	V _{DDP}	V _{CC} =5V, I _{CC} <20mA	2.5		6.5	V
		Card Inactive			1.2	mA
Supply Current	I _{DD}	Card Active, f _{CLK} =f _{XTAL} , C _L =30pF			1.5	mA
		Inactive Mode			0.1	mA
		active mode, $f_{CLK}=f_{XTAL}$, C _L =30Pf, $ I_{CC} =0$			10	mA
DC/DC Converter Supply Current	I _{DDP}	$V_{\rm CC}$ =5V, $ I_{\rm CC} $ =80mA			200	mA
		$V_{CC}=3V$, $ I_{CC} =65mA$			100	mA
Falling Threshold Voltage on V_{DD}	V _{th2}	No External Resistors at Pin PORADJ, V _{DD} Level Falling	2.35	2.45	2.55	V
Hysteresis of Threshold Voltage V_{th2}	V _{hys2}	No External Resistors at Pin PORADJ	50	100	150	mV
Pin PORADJ (Note 2)						
External Rising Threshold Voltage on V_{DD}	V _{th(ext)(rise)}	External Resistor Bridge at Pin PORADJ, V _{DD} Level Rising	1.240	1.28	1.310	V
External Falling Threshold Voltage on V_{DD}	V _{th(ext)(fall)}	External Resistor Bridge at Pin POR ADJ, V _{DD} Level Falling	1.190	1.22	1.26	V
Hysteresis of Threshold Voltage $V_{th(ext)}$	V _{hys(ext)}	External Resistor Bridge at Pin POR ADJ	30	60	90	mV
Hysteresis of Threshold Voltage $V_{th(ext)}$ Variation with Temperature	$\Delta V_{\text{hys(ext)}}$	External Resistor Bridge at Pin PORADJ			0.25	mV/K
Width of Internal Power-On	t _w	No External Resistors at Pin PORADJ	4	8	12	ms
Reset Pulse		External Resistor Bridge at Pin PORADJ	8	16	24	ms
		V _{PORADJ} <0.5V	-0.1	4	10	μA
Leakage Current On Pin PORADJ	I _{L(PORADJ)}	V _{PORADJ} >1V	-1		+1	μA
Total Power Dissipation	P _{tot}	Continuous Operation, T _{AMB} =-25~+85°C			0.56	W
DC/DC converter	-					
Clock Frequency	f _{CLK}	Card Active	2.2		3.2	MHz
Threshold Voltage for Voltage		5V Card	5.2	5.8	6.2	V
Doubler to Change to Voltage Follower	V _{th(vd-vf)}	3V Card	13.8	(4.1	4.4	V
Output Voltage On Pin V _{UP}	V _{UP(av)}	V _{CC} =5V	5.2	5.7	6.2	V
(Average Value)	- OF (av)	V _{CC} =3V, V _{DDP} =3.3V	3.5	3.9	4.3	V
UNISONIC TECHNO	LOGIES CO	, LTD			6	of 15
UIC www.unisonic.com.tw						

Preliminary

LINEAR INTEGRATED CIRCUIT

■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TES	ST CONDITIONS	MIN	TYP	MAX	UNIT
Card supply voltage (pin V _{cc}) (No							
External Capacitance On Pin V _{CC}	C _{VCC}	Note 4		80		400	nF
			Card Inactive, I _{cc} =0mA	-0.1	0	+0.1	V
			Card Inactive, I _{cc} =1mA	-0.1	0	+0.3	V
			Card Active, I _{CC} <50mA	4.75	5.0	5.25	V
		5V Card	Card Active, Single Current Pulse, I _p =-100mA, t _p =2ms	4.65	5.0	5.25	V
			Card Active, Current Pulses, I _p =40nA	4.65	5.0	5.25	V
Card Supply Voltage	Vcc		Card Active, Current Pulses, I_p =40nA with $ I_{CC} $ <200mA, t_p <400ns	4.65	5.0	5.25	V
(Including Ripple Voltage)		3V Card	Card Inactive, $ I_{CC} = 0 \text{ mA}$	-0.1	0	+0.1	V
			Card Inactive, I _{cc} =1mA	-0.1	0	+0.3	V
			Card Active, I _{CC} <50mA	2.85	3.0	3.15	V
			Card Active, Single Current Pulse, I _p =-100mA, t _p =2ms	2.76	3.0	3.20	V
			Card Active, Current Pulses, I _p =40nA	2.76	3.0	3.20	V
			Card Active, Current Pulses, I_p =40nA with $ I_{CC} $ <200mA, t_p <400ns	2.76	3.0	3.20	V
Ripple Voltage on V _{CC} (Peak to Peak Value)	V _{CC(ripple)(p-p)}	f _{ripple} =20k	Hz~200MHz			350	mV
	L 1	V _{CC} =0~5				80	mA
Card Supply Current	I _{cc}	V _{CC} =0~3				65	mA
			t-Circuit to GND	100	120	150	mA
Slew Rate		Slew Up	or Down	0.08	0.15	0.22	V/µs
Crystal oscillator (pins XTAL1 and External Capacitance On Pins	1	Depende	On Type of Crystal or	3			
XTAL1 and XTAL2	CXTAL1, CXTAL2			10	3	15	pF
Crystal Frequency	f _{XTAL}		KPK	a 20		26	MHz
Frequency Applied on Pin XTAL1	f _{XTAL1}		12 19 68	0		26	MHz
LOW-Level Input Voltage On Pin XTAL1		202	BA MINGIO	-0.3		+0.3V _{DD}	V
HIGH-Level Input Voltage On Pin XTAL1	VIH	-A-	W.try	$0.7V_{\text{DD}}$		V _{DD} +0.3	V

N

LINEAR INTEGRATED CIRCUIT

■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Data lines (pins I/O, I/OUC, AUX1,		1UC and AUX2UC)	,			
I/O to I/OUC, I/OUC to I/O Falling Edge Delay	t _{d(I/O-I/OUC)} , t _{d(I/OUC-I/O)}				200	ns
Active Pull-Up Pulse Width	t _{pu}				100	ns
Maximum Frequency On Data Lines	f _{l/O(max)}				1	MHz
Input Capacitance On Data Lines	Ci				10	pF
Data lines to card reader (pins I/O	, AUX1 and	AUX2; with integrated 11kΩ pt	ull-up res	istors to	V _{cc})	
		Inactive Mode No Load	0		0.1	V
Output Voltage	V _{o(inactive)}	Inactive Mode Inde Inde Inde Inde Inde Inde Inde In			0.3	V
Output Current	I _{o(inactive)}	Inactive Mode, Pin Grounded			-1	mA
LOW-Level Output Voltage	V _{OL}	I _{OL} =1mA	0		0.3	V
	02	I _{OL} ≥15mA	V _{CC} -0.4		V _{CC}	V
		No DC Load	0.9V _{CC}		V _{CC} +0.1	V
HIGH-Level Output Voltage	V _{OH}	5 and 3V Cards, I _{OH} <-40µA	0.75V _{CC}		V _{CC} +0.1	V
		I _{OH} ≥10mA	0		0.4	V
LOW-Level Input Voltage	VIL		0.3		0.8	V
HIGH-Level Input Voltage	VIH		1.5		V _{CC} +0.3	V
LOW-Level Input Current	I,L	V _{IL} =0V			600	μA
HIGH-Level Input Leakage Current	ILIH	V _{IH} =V _{CC}			10	μA
Data Input Transition Time	t _{t(DI)}	V _{IL(max)} to V _{IH(min)}			1.2	μs
Data Output Transition Time	$\mathbf{t}_{t(DO)}$	V₀=0~V _{CC} , C _L ≤80pF, 10% to 90%			0.1	μs
Integrated Pull-Up Resistor	R _{pu}	Pull-Up Resistor to V _{CC}		18		kΩ
Current When Pull-Up Active	I _{pu}	V _{OH} =0.9V _{CC} , C=80pF	-1			mA
Data lines to microcontroller						
(pins I/OUC, AUX1UC and AUX2U						
LOW-Level Output Voltage	V _{OL}	I _{OL} =1mA	0		0.3	<u>V</u>
HIGH-Level Output Voltage	V _{OH}	No DC Load	0.9V _{DD}		V _{DD} +0.1	V
LOW-Level Input Voltage	V _{IL}	5 and 3V Cards, I _{OH} <-40µA	0.75V _{DD} -0.3		V _{DD} +0.1 +0.3V _{DD}	V
HIGH-Level Input Voltage	V _{IL} V _{IH}		-0.3 0.7V _{DD}		+0.3v _{DD} V _{DD} +0.3	V
	1 1		0.7 000			
HIGH-Level Input Leakage Current	I _{LIH}	V _{IH} =V _{DD}			10	μA
LOW-Level Input Current	$ \mathbf{l}_{L} $	V _{IL} =0V			600	μA
						kΩ
Integrated Pull-Up Resistor	R _{pu}	Pull-Up Resistor to V _{CC}		18		1/22
Integrated Pull-Up Resistor Data Input Transition Time	R _{pu} t _{t(DI)}	V _{IL(max)} to V _{IH(min)}		18	1.2	μs
				18	1.2 0.1	
Data Input Transition Time	t _{t(DI)}	$V_{IL(max)}$ to $V_{IH(min)}$ $V_o=0 \sim V_{DD}$, $C_L < 30 pF$,	-1	18		μs
Data Input Transition Time Data Output Transition Time	$\frac{t_{t(DI)}}{t_{t(DO)}}$	$V_{IL(max)}$ to $V_{IH(min)}$ $V_o=0 \sim V_{DD}$, $C_L < 30 pF$, 10% to 90%	-1	18		μs μs
Data Input Transition Time Data Output Transition Time Current When Pull-Up Active	$\frac{t_{t(DI)}}{t_{t(DO)}}$	$V_{IL(max)}$ to $V_{IH(min)}$ $V_o=0 \sim V_{DD}$, $C_L < 30 pF$, 10% to 90% $V_{OH}=0.9 V_{DD}$, C=30pF Inactive Mode	55	18 140 2.7	0.1	μs μs mA kHz
Data Input Transition Time Data Output Transition Time Current When Pull-Up Active Internal oscillator	$\frac{t_{t(DI)}}{t_{t(DO)}}$	$V_{IL(max)}$ to $V_{IH(min)}$ $V_o=0-V_{DD}$, $C_L<30$ pF, 10% to 90% $V_{OH}=0.9V_{DD}$, C=30 pF	1	140	0.1	μs μs mA
Data Input Transition Time Data Output Transition Time Current When Pull-Up Active Internal oscillator Frequency of Internal Oscillator Reset output to card reader (pin R	t _{t(DI)} t _{t(DO)} I _{pu} fosc(int) ST)	$V_{IL(max)}$ to $V_{IH(min)}$ $V_o=0-V_{DD}$, $C_L<30pF$, 10% to 90% $V_{OH}=0.9V_{DD}$, C=30pF Inactive Mode Active Mode	55 ⁰ 12.2 0	140	0.1 200 3.2 0.1	μs μs mA kHz MHz
Data Input Transition Time Data Output Transition Time Current When Pull-Up Active Internal oscillator Frequency of Internal Oscillator Reset output to card reader (pin R Output Voltage	$\frac{t_{t(DI)}}{t_{t(DO)}}$	V _{IL(max)} to V _{IH(min)} V _o =0~V _{DD} , C _L <30pF,	55 12.2 0 0	140	0.1 200 3.2 0.1 0.3	μs μs mA kHz MHz V V
Data Input Transition Time Data Output Transition Time Current When Pull-Up Active Internal oscillator Frequency of Internal Oscillator Reset output to card reader (pin R	t _{t(DI)} t _{t(DO)} I _{pu} fosc(int) ST)	$V_{IL(max)}$ to $V_{IH(min)}$ $V_o=0-V_{DD}$, $C_L<30pF$, 10% to 90% $V_{OH}=0.9V_{DD}$, C=30pF Inactive Mode Active Mode	55 ⁰ 12.2 0	140	0.1 200 3.2 0.1	μs μs mA kHz MHz

Preliminary

Preliminary LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS (Cont.)

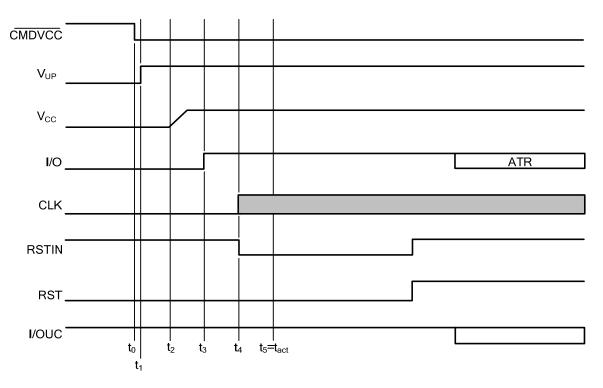
1					I	=
SYMBOL			MIN	TYP	MAX	UNIT
Vol			-			V
102						V
Vон						V
			0			V
					μs	
	C _L =100pF, V _{CC} =5 c	or 3V			0.1	μs
CLK)	<u>i i i</u>				<u> </u>	
V _{o(inactive)}	Inactive Mode		0			V V
l _{o(inactive)}			0		-1	mA
, <i>,</i> ,			0		0.3	V
Vol	· · · ·	Limit)				V
						V
V _{OH}	· · · · · · · · · · · · · · · · · · ·	nt Limit)				V
tr		/	_			ns
1						ns
			45			%
		C ₁ =30pF				V/ns
						1/110
					+0 3Vpp	V
						V
1 1	0 <vu<vpp< td=""><td></td><td>0.7 000</td><td></td><td></td><td>μA</td></vu<vpp<>		0.7 000			μA
						μA
						μ, ι
			-0.3		+0.31/pp	V
						V
			0.7 000		5	μA
ILIH	0 <v<sub>IH<v<sub>DD</v<sub></v<sub>				5	μA
drain with i	ntegrated 20kΩ pull	l-up resistor	to Vnn)		1	
					0.3	V
			-		0.0	V
		stor to Vpp		20	24	kΩ
i vpu			10			111
I. I						
CC(sd)				130	150	mA
II/O(lim)			-15		+15	mA
I _{CLK(lim)}			-		-	mA
I _{RST(lim)}			-20		+20	mA
, т	1			150		°C
l _{sd}						
l sd	1		~ 3		<u>г г</u>	
t _{act}	see Fig.1	A	50	0	220	μs
	see Fig.1 see Fig.3	KIR	50 50	80	220 100	μs μs
t _{act}		之有 68		80		
t _{act} t _{de} t ₃	see Fig.3 see Fig.1&2	* 13 68 109	50 50	80	100 130	µs µs
t _{act} t _{de}	see Fig.3	* #168 109	500	80	100	μs
	SYMBOL V _{OL} V _{OH} tr tr Vo(inactive) Io(inactive) VOL VOL VOH tr SR KDIV2, CMI VIL VIH ILILI VIL VIH ILILI OLILIN And PRES) VIL VIH ILIN ILIN <tr tr=""></tr>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SYMBOL TEST CONDITIONS V_{OL} $I_{OL}=200\muA$ $I_{OL}=20mA$ (Current Limit) V_{OH} $I_{OH}=-200\muA$ $I_{OH}=-200\muA$ (Current Limit) tr $C_L=100pF$, $V_{CC}=5$ or $3V$ tr $C_L=100pF$, $V_{CC}=5$ or $3V$ ZLK) Inactive Mode No Load Io(inactive)=1mA V_{OL} Inactive Mode No Load Io(inactive)=1mA V_{OL} CLK Inactive, Pin Grounded V_{OL} IoL=200 μ A IoL=200 μ A V_{OL} IoL=70mA (Current Limit) V_{OH} IoH=-200 μ A IoLH=-70mA (Current Limit) V_{OH} IOH=-70mA (Current Limit) IoLH V_{IL} OVIL OVIL IoLH V_{IL}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

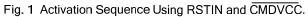
UNISONIC TECHINOLOGIES CO., LTD

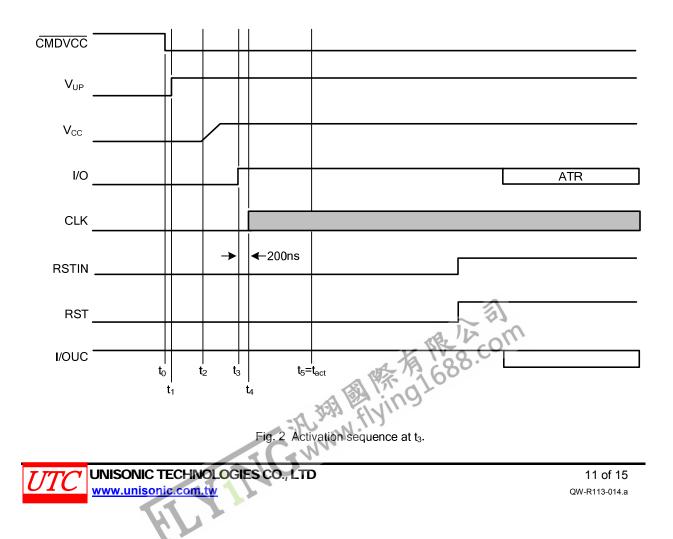
ELECTRICAL CHARACTERISTICS (Cont.)

- Notes: 1. All parameters remain within limits but are tested only statistically for the temperature range. When a parameter is specified as a function of V_{DD} or V_{CC} it means their actual value at the moment of measurement.
 - 2. If no external bridge is used then, to avoid any disturbance, it is recommended to connect pin 18 to ground.
 - 3. To meet these specifications, pin V_{CC} should be decoupled to CGND using two ceramic multilayer capacitors of low ESR both with values of 100nF, or one 100nF and one 220nF (see Fig. 6)
 - 4. Permitted capacitor values are 100, or 100 + 100, or 220, or 220 + 100, or 330nF.
 - 5. Transition time and duty factor definitions are shown in Fig.5, $\delta = \frac{t_1}{t_1 + t_2}$
 - 6. Pin CMDVCC is active LOW; pin RSTIN is active HIGH; for CLKDIV1 and CLKDIV2 functions see Table 1.
 - 7. Pin PRES is active LOW; pin PRES is active HIGH; PRES has an integrated 1.25μ A current source to GND (PRES to V_{DD}); the card is considered present if at least one of the inputs PRES or PRES is active.

CLKDIV1	CLKDIV2	f _{CLK}						
0	0	$\frac{f_{XTAL}}{8}$						
0	1	$\frac{f_{XTAL}}{4}$						
1	1	$\frac{f_{XTAL}}{2}$						
1	0	f _{XTAL}						

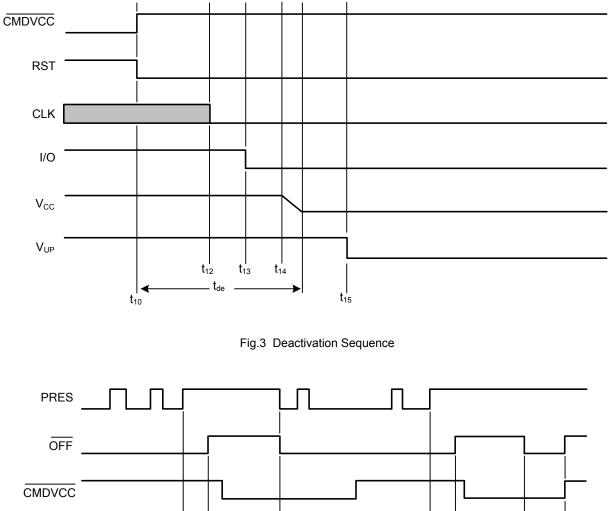

Table 1 Clock frequency selection (Note)


Note: The status of pins CLKDIV1 and CLKDIV2must not be changed simultaneously; a delay of 10ns minimum between changes is needed; the minimum duration of any state of CLK is eight periods of XTAL1.



Preliminary LINEAR INTEGRATED CIRCUIT

TIMING WAVEFORMS



Preliminary

LINEAR INTEGRATED CIRCUIT

TIMING WAVEFORMS (Cont.)

V_{CC} debounce deboun

Fig. 4 Behaviour of $\overline{\text{OFF}},$ $\overline{\text{CMDVCC}},$ PRES and $V_{\text{CC}}.$

TIMING WAVEFORMS (Cont.)

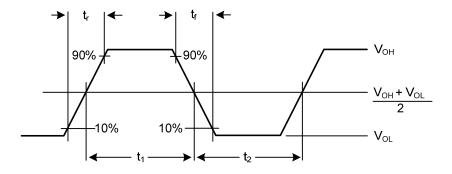


Fig. 5 Definition of output and input transition times.

Preliminary

TYPICAL APPLICATION CIRCUIT

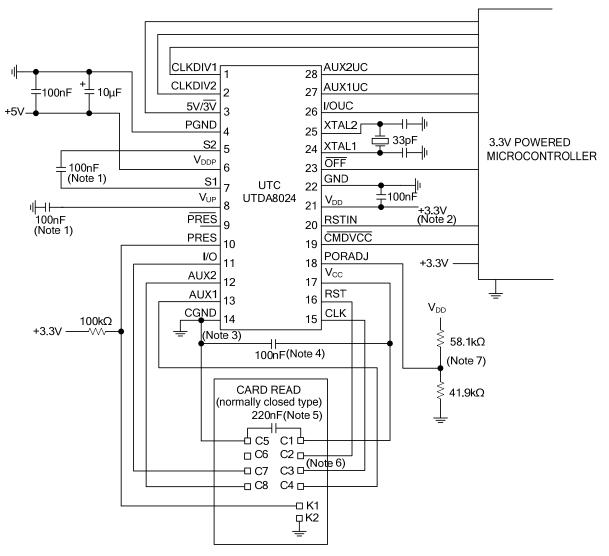


Fig. 6 Application Diagram.

Notes: 1. These capacitors must be of the low ESR-type and be placed near the IC (within 100mm).

- 2. UTC UTDA8024 and the microcontroller must use the same V_{DD} supply.
- 3. Make short, straight connections between CGND, C5 and the ground connection to the capacitor.
- 4. Mount one low ESR-type 100nF capacitor close to pin V_{CC}.
- 5. Mount one low ESR-type 100 or 220nF capacitor close to C1 contact (less than 100mm from it).
- 6. The connection to C3 should be routed as far from C2, C7, C4 and C8 and, if possible, surrounded by grounded tracks.
- 7. Optional resistor bridge for changing the threshold of V_{DD}. If this bridge is not required pin 18 should be connected to ground.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

