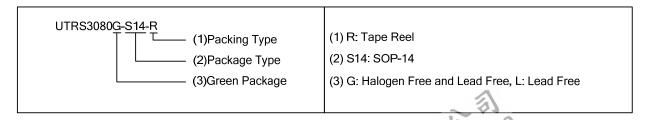
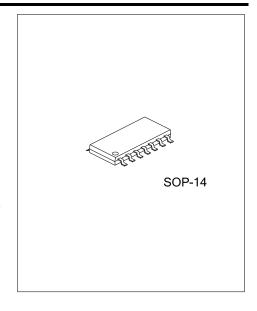

UTRS3080 Preliminary CMOS IC

FAIL-SAFE, 500KBPS, RS-485 / **RS-422 TRANSCEIVERS WITH** ±12KV ESD-PROTECTED

DESCRIPTION

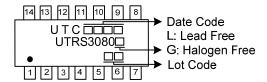
The UTC UTRS3080 high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. The device features fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be logic high if all transmitters on a terminated bus are disabled (high impedance). The UTC UTRS3080 features reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 500kbps.

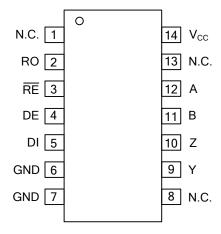

A device has a 1/8-unit-load receiver input impedance that allows up to 256 transceivers on the bus.



- * True fail-safe receiver while maintaining EIA/TIA-485 compatibility
- * Enhanced slew-rate limiting facilitates Error-Free data transmission
- * 5.0V single power supply
- * 1µA low-current shutdown mode
- * Allow up to 256 transceivers on the Bus
- * HBM ±12kV ESD protection for Drive / Receiver
- * Driver short circuit current limit
- * Thermal shutdown for overload protection

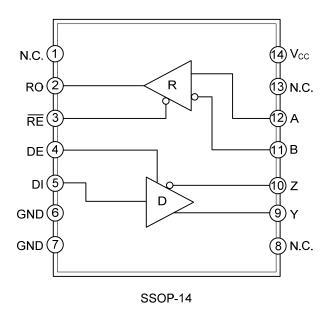
ORDERING INFORMATION


Ordering	Number	Dookege	Dooking	
Lead Free	Halogen Free	Package	Packing	
UTRS3080L-S14-R	UTRS3080G-S14-R	SOP-14	Tape Reel	



www.unisonic.com.tw 1 of 9 QW-R113-017.e

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION			
1, 8, 13	N.C.	Not connected. Not internally connected.			
2	RO	Receiver output. When RE is low and if A-B≥-20mV, RO will be high; if A-B≤ -200mV, RO will be low.			
3	RE	Receiver output enable. Drive \overline{RE} low to enable RO; RO is high impedance when \overline{RE} is high. Drive \overline{RE} high and DE low to enter low-power shutdown mode.			
4	DE	Driver output enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive RE high and DE low to enter low-power shutdown mode.			
5	DI	Driver input. With DE high, a low on DI forces non-inverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low.			
6, 7	GND	Ground			
9	Υ	Non-inverting driver output			
10	Z	Inverting driver output			
11	В	Inverting receiver input			
12	Α	Non-inverting receiver input			
14	V_{CC}	Positive supply; 4.75V≤V _{CC} ≤5.25V			

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	+7.0	V
Control Input Voltage (RE, DE)		-0.3 ~ (V _{CC} +0.3)	V
Driver Input Voltage	DI	-0.3 ~ (V _{CC} +0.3)	V
Driver Output Voltage (A, B, Y, Z)		±13	V
Receiver Input Voltage (A, B)		±13	V
Receiver Input Voltage, Full Duplex (A, B)		±25	V
Receiver Output Voltage (RO)		-0.3 ~ (V _{CC} +0.3)	V
Continuous Power Dissipation (Derate 8.33mW/°C above +70°C)	P_D	667	mW
Lead Temperature (Soldering, 10s)	TL	+300	°C
Operating Temperature Ranges	T _{OPR}	-40 ~ +85	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC}=+5.0V \pm 5\%, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC}=+5.0V \text{ and } T_A=+25^{\circ}C) \text{ (Note 1)}$

(VCC-10.0V ±070, TA-TIVIIN to T	IVIAA, arricoo	otherwise noted. Typical values	Jaio at VCC	· 0.0 v	una IA-	· 20 O) (1010 1)
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
DRIVER							
Differential Driver Output	\/	D =10k0			F 0	V	
(No Load)	V_{OD1}	$R_T=10k\Omega$			5.0	V	
Differential Driver Output	V _{OD2}	Fig.1, R=50Ω (RS-422)		1.6			V
Differential Driver Output	V OD2	Fig.1, R=27Ω (RS-485)		1.4			V
Change in Magnitude of							
Differential Output Voltage	ΔV_{OD}	Fig.1, R=50 Ω or R=27 Ω				0.2	V
(Note 2)							
Driver Common-Mode Output	Voc	Fig.1, R=50Ω or R=27Ω				3.0	V
Voltage	VOC	1 19.1, 11-0032 01 11-2732				0.0	
Change In Magnitude of							
Common-Mode Voltage	ΔV_{OC}	Fig.1, R=50 Ω or R=27 Ω				0.2	V
(Note 2)							
Input High Voltage	V _{IH1}	DE, DI, RE		2.0			V
Input Low Voltage	V_{IL1}	DE, DI, RE				0.8	V
DI Input Hysteresis	V_{HYS}				100		mV
Input Current	I _{IN1}	DE, DI, RE				±2.0	μΑ
Input Current (A and B)		DE=GND, V_{CC} =GND or 5.25V V_{IN} =12V V_{IN} =-7V				125	μΑ
Full Duplex	I _{IN4}					-75	μΑ
Output Leakage (Y and Z)		DE-CND V -CND or 5 25V	V _{IN} =12V			125	μΑ
Full Duplex	I _O	DE=GND, V _{CC} =GND or 5.25V	$V_{IN}=-7V$	-100			μΑ
Driver Chart Circuit Outrot		-7V≤V _{OUT} ≤V _{CC}		-250			mA
Driver Short-Circuit Output Current (Note 4)	V_{OD1}	0V≤V _{OUT} ≤12V				250	mA
Current (Note 4)		0V≤V _{OUT} ≤V _{CC}		±25			mA
	•	•	^	27		•	•
			10. 1	70	7		
		X	STO	CO.			
		ALL X	3 680	•			
		18 PM	170				
		nin Pel Roc	9				
		-d' 200, Eld.					
		JONN.					
		0V≤V _{OUT} ≤12V 0V≤V _{OUT} ≤V _{CC}					
UNISONIC TEC	HINOLOGI	ES CO. LTD					4 of 9
www.unisonic.c	om.tw					QW-R	113-017.e

■ DC ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS N		MIN	TYP	MAX	UNIT
RECEIVER							
Receiver Differential Threshold Voltage	V_{TH}	V _{CM} =+2.5V		-200		-20	mV
Receiver Input Hysteresis	ΔV_{TH}				25		mV
Receiver Output High Voltage	V_{OH}	I _O =-4mA, V _{ID} =-20mV		V _{CC} -1.5			V
Receiver Output Low Voltage	V_{OL}	I _O =4mA, V _{ID} =-200mV				0.4	V
Three-State Output Current at Receiver	I _{OZR}	0.4V≤V _O ≤ 2.4V				±1.0	μΑ
Receiver Input Resistance	R _{IN}	-7V≤V _{CM} ≤+12V		96			kΩ
Receiver Output Short-Circuit Current	I _{OSR}	0V≤V _{RO} ≤V _{CC}		±7		±95	mA
SUPPLY CURRENT							
Supply Current		No Load,	DE=V _{CC}		430	900	μΑ
Supply Current	I _{CC}	RE =DI=GND or V _{CC}	DE=GND		375	600	μA
Supply Current in Shutdown Mode	I _{SHDN}	DE=GND, $V_{\overline{RE}} = V_{CC}$			1.0	10	μA

Notes: 1. All currents into the device are positive; all currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

- 2. ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.
- 3. The SRL pin is internally biased to $V_{CC}/2$ by a $100k\Omega/100k\Omega$ resistor divider. It is guaranteed to be $V_{CC}/2$ if left unconnected.
- 4. Maximum current level applies to peak current just prior to foldback-current limiting; minimum current level applies during current limiting.

■ SWITCHING CHARACTERISTICS

 $(V_{CC}$ =+5.0V ±5%, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at V_{CC} =+5.0V and T_A =+25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	toour	Fig.3 and 5, R _{DIFF} =54Ω, C _{L1} =C _{L2} =100pF		100		ns
Driver Input to Output	t _{DPHL}			100		ns
Driver Output Skew		Fig.3 and 5, R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF		5	200	ns
Driver Rise or Fall Time	t_{DR}, t_{DF}	Fig.3 and 5, R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF		200		ns
Maximum Data Rate	f_{MAX}		500			kbps
Driver Enable to Output High	t_{DZH}	Fig.4 and 6, C _L =100pF, S2 Closed			3500	ns
Driver Enable to Output Low	t _{DZL}	Fig.4 and 6, C _L =100pF, S1 Closed			3500	ns
Driver Disable Time from Low	t_{DLZ}	Fig.4 and 6, C _L =15pF, S1 Closed			200	ns
Driver Disable Time from High	t _{DHZ}	Fig.4 and 6, C _L =15pF, S2 Closed			200	ns
Receiver Input to Output	t _{RPLH} , t _{RPHL}	Fig.7 and 9, V _{ID} ≥2.0V; Rise and Fall Time of V _{ID} ≤15ns		200		ns
t _{RPLH} - t _{RPHL} Differential Receiver Skew	t _{RSKD}	Fig.7 and 9, V _{ID} ≥2.0V; Rise and Fall Time of V _{ID} ≤15ns		50		ns
Receiver Enable to Output Low	t _{RZL}	Fig.2 and 8, C _L =100pF, S1 Closed		50		ns
Receiver Enable to Output High	t _{RZH}	Fig.2 and 8, C _L =100pF, S2 Closed		50		ns
Receiver Disable Time from Low	t_{RLZ}	Fig.2 and 8, C _L =100pF, S1 Closed		50		ns
Receiver Disable Time from High	t _{RHZ}	Fig.2 and 8, C _L =100pF, S2 Closed		50		ns
Time to Shutdown	t _{SHDN}	Note 1		200		ns
Driver Enable from Shutdown to Output High		Fig. 4 and 6, C _L =15pF, S2 Closed			4500	ns
Driver Enable from Shutdown to Output Low	t _{DZL(SHDN)}	Fig.4 and 6, C _L =15pF, S1 Closed			4500	ns
Receiver Enable from Shutdown to Output High	t _{RZH(SHDN)}	Fig.4 and 6, C _L =100pF, S2 Closed			3500	ns
Receiver Enable from Shutdown to Output Low	t _{RZL(SHDN)}	Fig. 4 and 6, C _L =100pF, S1 Closed			3500	ns

Note: The device is put into shutdown by bringing \overline{RE} high and DE low. If the enable inputs are in this state for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 600ns, the device is guaranteed to have entered shutdown.

FUNCTION TABLE

Table 1 TRANSMITTING

INPUTS			OUTPUTS		
RE	DE	DI	Z	Y	
Х	1	1	0	1	
Х	1	0	1	0	
0	0	X	High-Z	High-Z	
1	0	X	Shutdown		

Table 2 RECEIVING

	INPUTS		OUTPUT
RE	DE	A-B	RO
0	X	≥-0.02V	1
0	X	≤-0.2V	0
0	X	Open/Shorted	1
1	1	X	High-Z
1	0	X	Shutdown

X = Don't care

Shutdown mode, driver and receiver outputs high impedance

■ TEST CIRCUIT

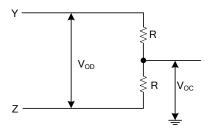


Fig. 1 Driver DC Test Circuit

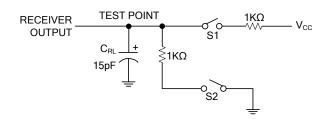


Fig. 2 Receiver Enable/Disable Timing Test Load

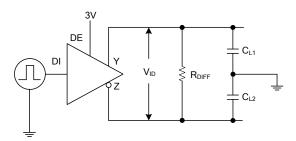


Fig. 3 Driver Timing Test Circuit

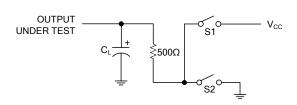


Fig. 4 Driver Enable/Disable Timing Test Load

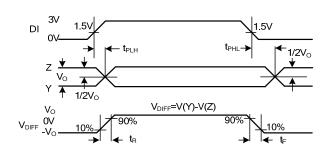


Fig. 5 Driver Propagation Delays

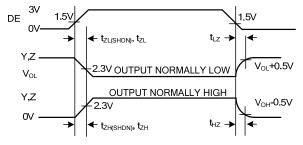


Fig. 6 Driver Enable and Disable Times

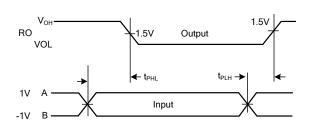


Fig. 7 Receiver Propagation Delays

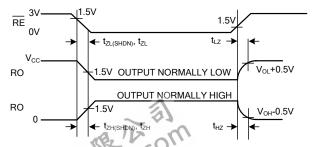


Fig. 8 Receiver Enable and Disable Times

■ TEST CIRCUIT (Cont.)

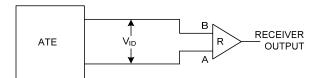
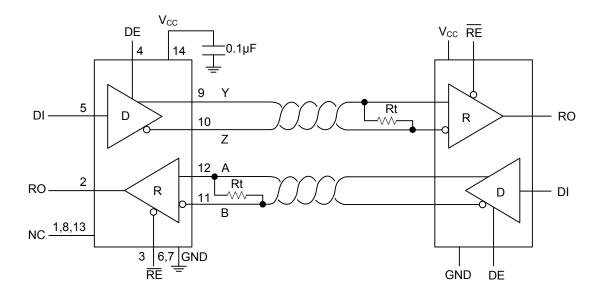



Fig. 9 Receiver Propagation Delay Test Circuit

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.