UTRS3085 Preliminary CMOS IC

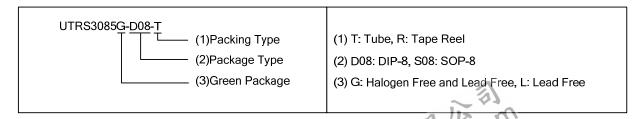
FAIL-SAFE, 2.5MBPS, RS-485 / **RS-422 TRANSCEIVERS WITH** ±12KV ESD-PROTECTED

DESCRIPTION

The UTC UTRS3085 high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. The device features fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be logic high if all transmitters on a terminated bus are disabled (high impedance). The UTC UTRS3085 offer higher driver output slew-rate limits, allowing transmission up to 2.5Mbps.

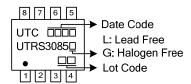
The transceiver typically draws 375µA of supply current when unloaded or when fully loaded with the drivers disabled.

A device has a 1/8-unit-load receiver input impedance that allows up to 256 transceivers on the bus.



FEATURES

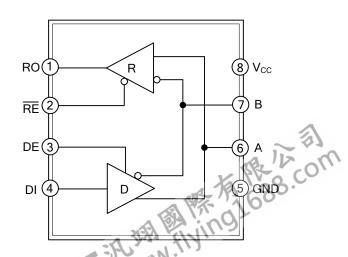
- * True fail-safe receiver while maintaining EIA/TIA-485 compatibility.
- * Enhanced slew-rate limiting facilitates Error-Free data transmission.
- * 5.0V single power supply.
- * 1µA low-current shutdown mode.
- * Allow up to 256 transceivers on the Bus.
- * HBM ±12kV ESD protection for Transmitter Output
- * Driver short circuit current limit.
- * Thermal shutdown for overload protection.


ORDERING INFORMATION

Ordering	Number	Dookogo	Dooking
Lead Free	Halogen Free	Package	Packing
UTRS3085L-D08-T	RS3085L-D08-T UTRS3085G-D08-T		Tube
UTRS3085L-S08-R	UTRS3085G-S08-R	SOP-8	Tape Reel

www.unisonic.com.tw 1 of 7 QW-R113-015.f

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	RO	Receiver output.		
2	RE	Receiver output enable. Drive \overline{RE} low to enable RO; RO is high impedance when \overline{RE} is high. Drive \overline{RE} high and DE low to enter low-power shutdown mode.		
3	DE	Driver output enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive $\overline{\text{RE}}$ high and DE low to enter low-power shutdown mode.		
4	DI	Driver input. With DE high, a low on DI forces non-inverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low.		
5	GND	Ground		
6	Α	Non-inverting receiver input and non-inverting driver output		
7	В	Inverting receiver input and inverting driver output		
8	V _{CC}	Positive supply, 4.75V≤V _{CC} ≤5.25V		

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V _{CC}	+7.0	V
Control Input Voltage (RE, DE)			-0.3 ~ (V _{CC} +0.3)	V
Driver Input Voltage		DI	-0.3 ~ (V _{CC} +0.3)	V
Receiver Input Voltage (A, B)			±12.5	V
Receiver Output Voltage (RO)			-0.3 ~ (V _{CC} +0.3)	V
Continuous Power Dissipation DIP-8		Б	550	mW
(Derate 5.88mW/°C above +70°C) SOP-8		P _D	471	mW
Operating Temperature Ranges		T _{OPR}	-40 ~ +85	°C
Storage Temperature Range		T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are only stress ratings and it is not implied for functional device operation.

Absolute maximum ratings are the values beyond which the device will be damaged permanently.

■ DC ELECTRICAL CHARACTERISTICS

 $(V_{CC}=+5.0V \pm 5\%, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC}=+5.0V \text{ and } T_A=+25^{\circ}C) \text{ (Note 1)}$

T .		T T T T T T T T T T T T T T T T T T T	l .			1	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
DRIVER	I		1	1		1	
Differential Driver Output	V_{OD1}	Fig.1			5.0	V	
(No Load)	• 001	-				-	
Differential Driver Output	V_{OD2}	Fig.1, R=50Ω (RS-422)	1.8			V	
·	• 002	Fig.1, R=27Ω (RS-485)	1.4			V	
Change in Magnitude of							
Differential Output Voltage	ΔV_{OD}	Fig.1, R=50Ω or R=27Ω			0.2	V	
(Note 2)							
Driver Common-Mode Output	V _{oc}	Fig.1, R=50Ω or R=27Ω			3.0	V	
Voltage	100					-	
Change In Magnitude of		F: 4 D 500 D 070				.,	
Common-Mode Voltage	ΔV_{OC}	Fig.1, R=50Ω or R=27Ω			0.2	V	
(Note 2)							
Input High Voltage	V _{IH1}	DE, DI, RE	2.0			V	
Input Low Voltage	V _{IL1}	DE, DI, RE			8.0	V	
DI Input Hysteresis	V_{HYS}			100		mV	
Input Current	I _{IN1}	DE, DI, RE			±2.0	μΑ	
Innut Current (A and D)		DE=GND, V _{IN} =12V			125	μA	
Input Current (A and B)	I _{IN2}	V _{CC} =GND or 5.25V V _{IN} =-7V			-75	μA	
Daire and Change of Control of		-7V≤V _{OUT} ≤V _{CC}	-250			mA	
Driver Short-Circuit Output	V _{OD1}	0V≤V _{OUT} ≤12V			250	mA	
Current (Note 4)		0V≤V _{OUT} ≤V _{CC}	±25			mA	
RECEIVER							
Receiver Differential	\/	V -12.5V	-200		20	\ /	
Threshold Voltage	V_{TH}	V _{CM} =+2.5V	-200		-20	mV	
Receiver Input Hysteresis	ΔV_{TH}			25		mV	
Receiver Output High Voltage	V_{OH}	I _O =-4mA, V _{ID} =-20mV	V _{CC} -1.5			V	
Receiver Output Low Voltage	V_{OL}	I _O =4mA, V _{ID} =-200mV	No.		0.4	V	
Three-State Output Current at	1	TE		loz _R 0.4V≤V ₀ ≤2.4V	2//.	±1.0	
Receiver	I _{OZR}	U.4V2V022.4V	28.0		±1.U	μA	
Receiver Input Resistance	R _{IN}	-7V≤V _{CM} ≤+12V	96			kΩ	
Receiver Output Short-Circuit	I _{OSR}	0V≤V _{RO} ≤V _{CC}	±7		±95	mA	
Current	IOSR	O V = V RO = V CG	1		190	111/7	

DC ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
SUPPLY CURRENT							
O		No Load,	DE=V _{CC}		430	900	μA
Supply Current	ICC	RE =DI= V _{CC} or GND	DE=GND		375	600	μA
Supply Current in Shutdown Mode	I _{SHDN}	DE=GND, V _{RE} =V _{CC}			1.0	10	μΑ

Notes: 1. All currents into the device are positive; all currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

- 2. ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.
- 3. Maximum current level applies to peak current just prior to foldback-current limiting; minimum current level applies during current limiting.

■ SWITCHING CHARACTERISTICS

 $(V_{CC}$ =+5.0V ±5%, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at V_{CC} =+5.0V and T_A =+25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Driven Innest to Output	t _{DPLH}	Fig. 2 and F. D. — F40. C. — C. — 400 n F		100		ns
Driver Input to Output	t _{DPHL}	Fig.3 and 5, R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF		100		ns
Driver Output Skew	4	Fig. 2 and 5 D = 540 C = 0 = 400 F		5	200	2
t _{DPLH} - t _{DPHL}	t _{DSKEW}	Fig.3 and 5, R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF		5	200	ns
Driver Rise or Fall Time	t_{DR}, t_{DF}	Fig.3 and 5, R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF		200		ns
Maximum Data Rate	f _{MAX}		2.5			Mbps
Driver Enable to Output High	t _{DZH}	Fig.4 and 6, C _L =100pF, S2 Closed			3500	ns
Driver Enable to Output Low	t _{DZL}	Fig.4 and 6, C _L =100pF, S1 Closed			3500	ns
Driver Disable Time from Low	t _{DLZ}	Fig.4 and 6, C _L =15pF, S1 Closed			200	ns
Driver Disable Time from High	t _{DHZ}	Fig.4 and 6, C _L =15pF, S2 Closed			200	ns
Descrives Insert to Outset	t _{RPLH} ,	Fig.7 and 9, V _{ID} ≥2.0V; Rise and Fall Time		200		
Receiver Input to Output	t _{RPHL}	of V _{ID} ≤15ns		200		ns
t _{RPLH} - t _{RPHL} Differential	4	Fig.7 and 9, V _{ID} ≥2.0V; Rise and Fall Time		50		2
Receiver Skew	t _{RSKD}	of V _{ID} ≤15ns		50		ns
Receiver Enable to Output	4	Fig.2 and 8, C _L =100pF, S1 Closed		50		no
Low	t _{RZL}	rig.2 and 6, C _L =100pF, S1 Closed		50		ns
Receiver Enable to Output	+	Fig.2 and 8, C _L =100pF, S2 Closed		50		ns
High	t _{RZH}	rig.z and 6, GL=100pr , 32 Glosed		30		113
Receiver Disable Time from	t _{RLZ}	Fig.2 and 8, C _L =100pF, S1 Closed		50		ns
Low	IRLZ	rig.z and 6, GL=100pr , 31 Closed		30		113
Receiver Disable Time from	t _{RHZ}	Fig.2 and 8, C _L =100pF, S2 Closed		50		ns
High	•RHZ	1 19.2 and 0, 0[- 100pi , 02 0103cd				113
Time to Shutdown	t _{SHDN}	Note 1		200		ns
Driver Enable from Shutdown						
to	t _{DZH(SHDN)}	Fig.4 and 6, C _L =15pF, S2 Closed			4500	ns
Output High						
Driver Enable from Shutdown						
to	t _{DZL(SHDN)}	Fig.4 and 6, C _L =15pF, S1 Closed			4500	ns
Output Low			4			
Receiver Enable from		~	\$7			
Shutdown	t _{RZH(SHDN)}	Fig.2 and 8, C _L =100pF, S2 Closed	200	1	3500	ns
to Output High		K NO	CO.			
Receiver Enable from		11/2 680.				
Shutdown	t _{RZL(SHDN)}	Fig.2 and 8, C _L =100pF, S1 Closed			3500	ns
to Output Low						

Note: The device is put into shutdown by bringing \overline{RE} high and DE low. If the enable inputs are in this state for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 600ns, the device is guaranteed to have entered shutdown.

FUNCTION TABLE

TRANSMITTING

INPUTS			OUTPUTS		
RE	DE	DI	В	Α	
Х	1	1	0	1	
Х	1	0	1	0	
0	0	X	High-Z	High-Z	
1	0	Х	Shutdown		

RECEIVING

INPUTS			OUTPUT
RE	DE	A-B	RO
0	X	≥-0.02V	1
0	X	≤-0.2V	0
0	X	Open/Shorted	1
1	1	X	High-Z
1	0	X	Shutdown

X = Don't care

Shutdown mode, driver and receiver outputs high impedance

TEST CIRCUIT

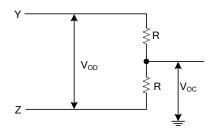


Fig. 1 Driver DC Test Circuit

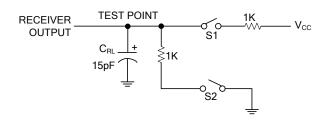


Fig. 2 Receiver Enable/Disable Timing Test Load

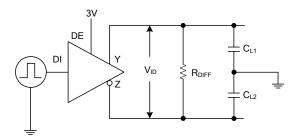


Fig. 3 Driver Timing Test Circuit

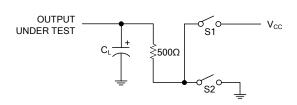


Fig. 4 Driver Enable/Disable Timing Test Load

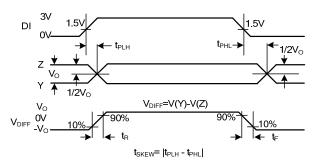


Fig. 5 Driver Propagation Delays

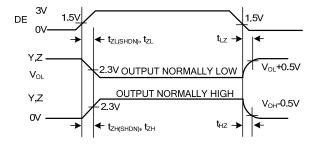


Fig. 6 Driver Enable and Disable Times

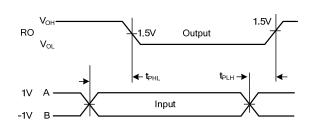
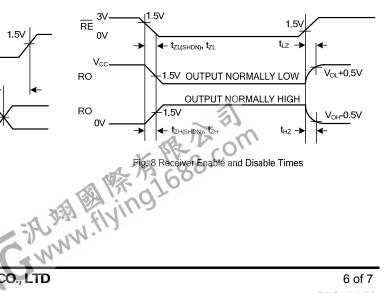



Fig. 7 Receiver Propagation Delays

■ TEST CIRCUIT (Cont.)

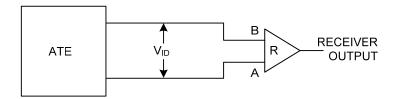
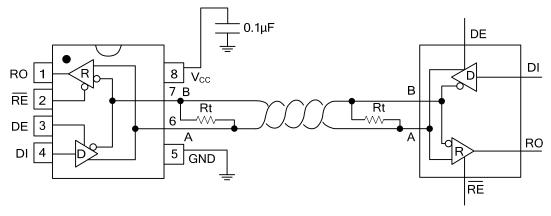



Fig. 9 Receiver Propagation Delay Test Circuit

TYPICAL APPLICATION CIRCUIT

Note: Pin labels Y and Z on timing, test, and waveform diagrams refer to pins A and B when DE is high.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.