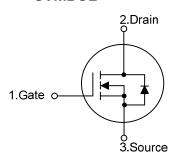
UTT100N06 **Power MOSFET**

100A, 60V N-CHANNEL **ENHANCEMENT MODE POWER** MOSFET

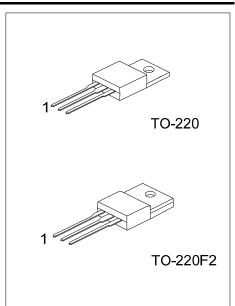
DESCRIPTION


The UTC UTT100N06 is an N-channel enhancement mode Power FET using UTC's advanced technology to provide customers with a minimum on-state resistance and superior switching performance.

It also can withstand high energy pulse in the avalanche and commutation mode.

FEATURES

- * Fast switching speed
- * $R_{DS(ON)}$ < 7.0m Ω @ V_{GS} =10V, I_D =50A
- * 100% avalanche tested
- * Improved dv/dt capability


SYMBOL

ORDERING INFORMATION

Ordering Number		Dooleage	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT100N06L-TA3-T	UTT100N06G-TA3-T	TO-220	G	D	S	Tube	
UTT100N06L-TF2-T	UTT100N06G-TF2-T	TO-220F2	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source UTT100N06G-TA3-T (1)Packing Type (1) T: Tube (2)Package Type (2) TA3: TO-220, TF2: TO-2201 (3) G: Halogen Free and Lead Free, L: Lead Free (3)Green Package SWWW. Flyin

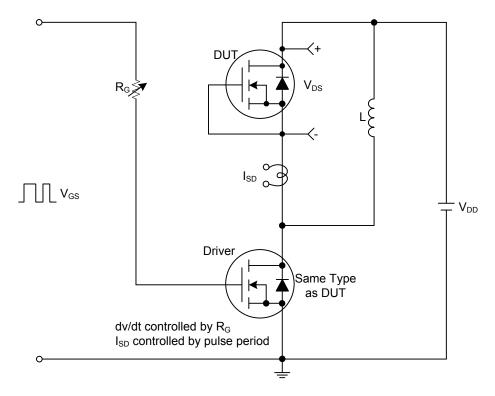
www.unisonic.com.tw

ABSOLUTE MAXIMUM RATINGS (T_J=25°C, unless otherwise specified)

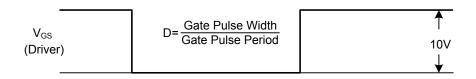
PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	60	V
Gate-Source Voltage		V_{GSS}	±20	V
Drain Current	Continuous	I _D	100	Α
	Pulsed	I _{DM}	400	Α
Avalanche Energy Single Pulsed		E _{AS}	450	mJ
Peak Diode Recovery dv/dt		dv/dt	6	V/ns
Power Dissipation	TO-220	В	100	W
	TO-220F2	P _D	63	W
Junction Temperature		T_J	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

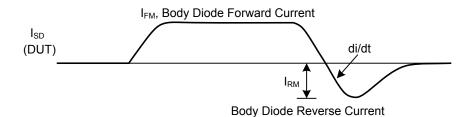
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

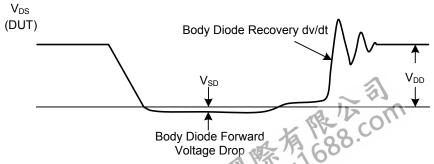
THERMAL CHARACTERISTICS


PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient		θ_{JA}	62.5	°C/W
Junction to Case	TO-220	0	1.5	°C/W
	TO-220F2	$\theta_{ m JC}$	1.98	°C/W

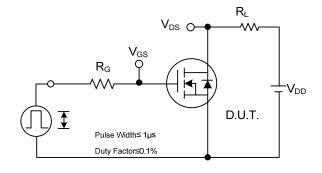
ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV_{DSS}	I _D =250μA, V _{GS} =0V	60			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =60V, V _{GS} =0V			10	μΑ
Gate- Source Leakage Current	Forward	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.0		3.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =50A			7.0	mΩ
DYNAMIC PARAMETERS					<u>.</u>		_
Input Capacitance		C_{ISS}			12900		pF
Output Capacitance		Coss	V_{GS} =0V, V_{DS} =25V, f=1.0MHz		1060		pF
Reverse Transfer Capacitance		C_{RSS}			700		pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_G			500		nC
Gate to Source Charge		Q_GS	V _{GS} =10V, V _{DS} =30V, I _D =100A		50		nC
Gate to Drain Charge		Q_GD			33		nC
Turn-ON Delay Time		$t_{D(ON)}$			90		ns
Rise Time		t_R	V_{DD} =30V, V_{GS} =10V,		130	200	ns
Turn-OFF Delay Time		$t_{D(OFF)}$	I _D ≒100A, R _G =0.4Ω		768		ns
Fall-Time		t⊧			280	420	ns
Transconductance		g FS	V _{DS} =15V, I _D =30A	30			S
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS							
Maximum Body-Diode Continuous Current		Is	R. V.	100			Α
Maximum Body-Diode Pulsed Current		I _{SM}	X IVO C	400			Α
Drain-Source Diode Forward Voltage		V_{SD}	I _S =100A, V _{GS} =0V		1.0	1.5	V
Resistance of Gate		R _G	W LY OT	0.65	1.3	2	Ω


2. Essentially independent of operating temperature. Notes: 1. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%.

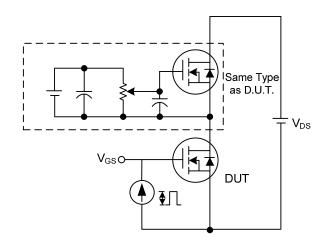

■ TEST CIRCUITS AND WAVEFORMS

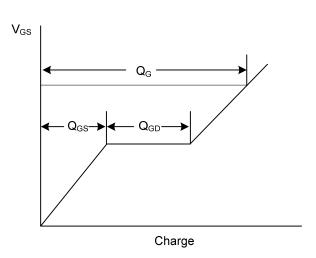
Peak Diode Recovery dv/dt Test Circuit



Peak Diode Recovery dv/dt Test Circuit and Waveforms

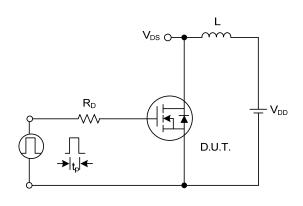
Peak Diode Recovery dv/dt Waveforms

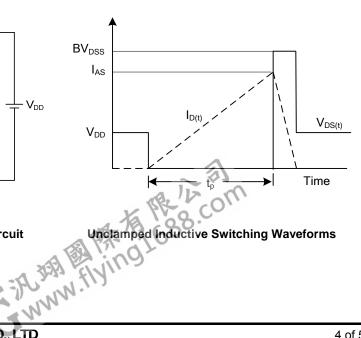

TEST CIRCUITS AND WAVEFORMS



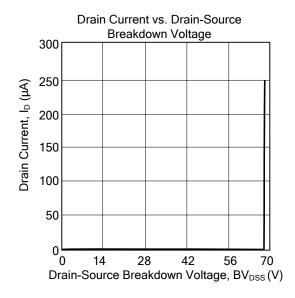
90% 10% V_{GS} -

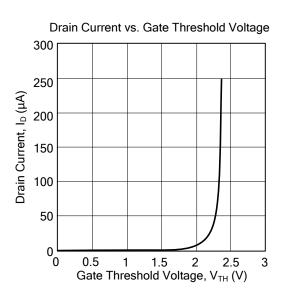
Switching Test Circuit

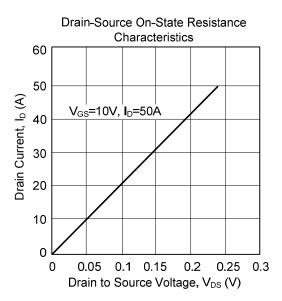

Switching Waveforms

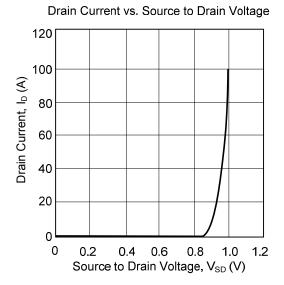


Gate Charge Test Circuit


Gate Charge Waveform






Unclamped Inductive Switching Test Circuit

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.