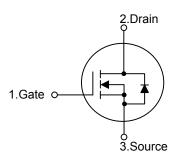
UTT150N03 Preliminary Power MOSFET

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

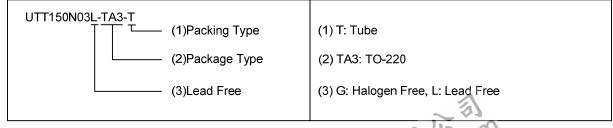
■ DESCRIPTION


The UTC **UTT150N03** is a N-channel power MOSFET, using UTC's advanced trench technology to provide customers with a minimum on-state resistance, low gate charge and superior switching performance.

The UTC **UTT150N03** is generally applied in DC to DC convertor, synchronous or conventional switching PWM controllers.

■ FEATURES

- * 150A, 30V, $R_{DS(ON)}$ =4.1m Ω @ V_{GS} =10V, I_D = 75A $R_{DS(ON)}$ =4.6m Ω @ V_{GS} =4.5V, I_D = 75A
- * High Switching Speed
- * High Power and Current Handling Capability
- * RoHS Compliant


■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Dealtons	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT150N03L-TA3-T	UTT150N03G-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

TO-220

<u>www.unisonic.com.tw</u> 1 of 5

ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	30	V
Gate-Source Voltage		V_{GSS}	±20	V
Drain Current	Continuous	I _D	150	Α
	Pulsed	I _{DM}	266	Α
Single Pulsed Avalanche Energy (Note 2)		E _{AS}	300	mJ
Power Dissipation	Power Dissipation	P _D	160	W
	Derate above 25°C	FD	1.07	W/°C
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55~+150	°C

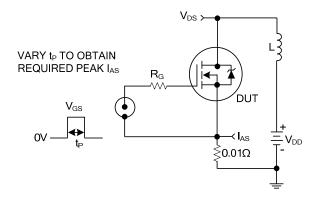
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL CHARACTERISTICS

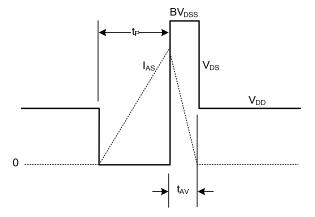
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62	°C/W
Junction to Case	θ_{JC}	0.94	°C/W

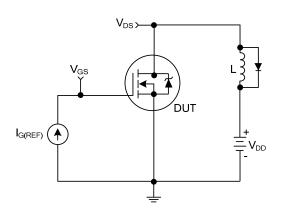
ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise noted)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS	l.			1		l .	
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	30			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =24V, V _{GS} =0V			1	μA
Gate- Source Leakage	Forward		V _{GS} =+20V, V _{DS} =0V			+100	nA
Current	Reverse	I_{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1		3	V
Static Drain-Source On-State		R _{DS(ON)}	V _{GS} =10V, I _D =75A		3.4	4.1	m0
Resistance			V _{GS} =4.5V, I _D =75A		4.0	4.6	mΩ
DYNAMIC PARAMETERS							
Input Capacitance		C_{ISS}			5200		pF
Output Capacitance		C_{OSS}	V_{GS} =0V, V_{DS} =15V, f=1.0MHz		970		pF
Reverse Transfer Capacitance		C_{RSS}			570		pF
SWITCHING PARAMETERS							
Gate Resistance		R_G	V _{GS} =0.5V, f=1MHz		2.1		Ω
Total Gate Charge		$Q_{G(TOT)}$	V _{GS} =0~10V, V _{DD} =15V, I _D =75A, I _G =1mA		106	132	nC
		Q _{G(5)}	V _{GS} =0~5V, V _{DD} =15V, I _D =75A, I _G =1mA		56	69	nC
Threshold Gate Charge		$Q_{\text{G(TH)}}$	V _{GS} =0~1V, V _{DD} =15V, I _D =75A, I _G =1mA		5.0	6.5	nC
Gate to Source Charge		Q_GS			15		nC
Gate Charge Threshold to Plateau		Q _{GS2}	V _{DD} =15V, I _D =75A, I _G =1mA		10		nC
Gate to Drain Charge		Q_GD			23		nC
Turn-ON Time		t _{ON}				168	ns
Turn-ON Delay Time		t _{D(ON)}			11		ns
Rise Time		t _R	V _{DD} =15V, I _D =75A, V _{GS} =4.5V,		105		ns
Turn-OFF Delay Time		$t_{D(OFF)}$	R_{GS} =3.3 Ω		70		ns
Fall-Time		t⊧			46		ns
Turn-OFF Time t _{OF}						173	ns
SOURCE- DRAIN DIODE RAT	INGS AN	D CHARACT	ERISTICS				
Drain-Source Diode Forward Voltage		V _{SD}	I _S =150A			1.25	V
			I _S =15A			1.0	V
Body Diode Reverse Recovery Time		t_{RR}	 - I _{SD} =150A, dI _{SD} /dt=100A/µs			37	ns
Body Diode Reverse Recovery Charge		Q_{RR}	100/1, αιςυ/αι-100//μο			21	nC

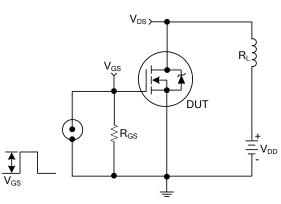

Notes: 1. Package current limitation is 80A.

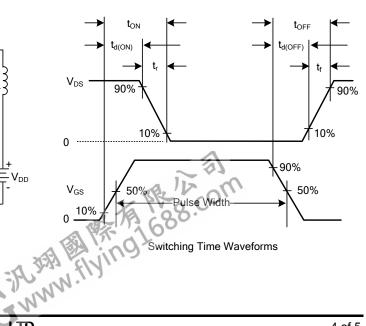
2. Starting T_J = 25°C, L = 0.15mH, I_{AS} = 64A, V_{DD} = 27V, V_{GS} =10V


3. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%


TEST CIRCUITS AND WAVEFORMS

Unclamped Energy Test Circuit


Unclamped Energy Waveforms


Gate Charge Test Circuit

Gate Charge Waveforms

Switching Time Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

