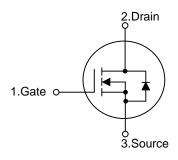
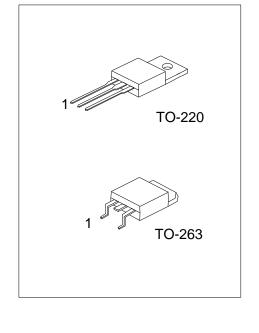
UTT150N06H **Power MOSFET**

150A, 60V N-CHANNEL **POWER MOSFET**

DESCRIPTION

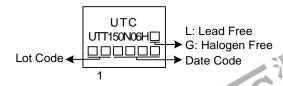

The UTC UTT150N06H is an N-channel Power Trench MOSFET, using UTC's advanced technology to provide customers with a minimum on-state resistance and superior switching performance.


The UTC UTT150N06H is generally applied in synchronous Rectification or DC to DC converter.

FEATURES

- * $R_{DS(ON)} \le 3.8 \text{ m}\Omega$ @ $V_{GS}=10V$, $I_{D}=75A$
- * High Switching Speed
- * High Power and Current Handling Capability

SYMBOL


ORDERING INFORMATION

Ordering Number		Doolsons	Pin	Assignm	Do akin n		
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT150N06HL-TA3-T	UTT150N06HG-TA3-T	TO-220	G	D	S	Tube	
UTT150N06HL-TQ2-R	UTT150N06HG-TQ2-R	TO-263	G	D	S	Tape Reel	
UTT150N06HL-TQ2-T	UTT150N06HG-TQ2-T	TO-263	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

www.unisonic.com.tw 1 of 5

ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

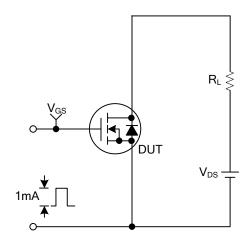
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	60	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	7.0	V/ns	
Drain Current	Continuous (T _C =25°C, Silicion Limited)	I _D	150	А	
	Pulsed (Note 2)	I _{DM}	600	А	
Single Pulsed Avalanche Energy (Note 3)		E _{AS}	500	mJ	
Power Dissipation	T _C =25°C	0	231	W	
	Derate above 25°C	P _D	1.54		
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ + 150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

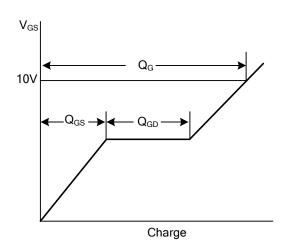
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 0.1mH, $I_{AS} = 75A$, $V_{DD} = 50V$, $R_G = 25\Omega$, Starting $T_J = 25^{\circ}C$
- 4. Essentially independent of operating temperature Typical Characteristics

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	0.94	°C/W	

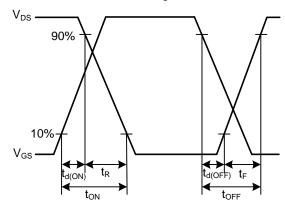

ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

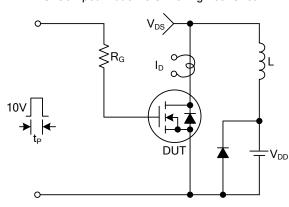
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V, T _C =25°C	60			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	μΑ
Gate- Source Leakage Current	Forward	Forward ,	V _{GS} =+20V, V _{DS} =0V			+100	nA
	Reverse	I _{GSS}	V_{GS} =-20V, V_{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =75A			3.8	mΩ
DYNAMIC PARAMETERS							
Input Capacitance	nput Capacitance				6190		рF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		1040		рF
Reverse Transfer Capacitance	Reverse Transfer Capacitance				300		рF
SWITCHING PARAMETERS		C _{RSS}					
Total Gate Charge		Q_G			440		nC
Gate to Source Charge		Q _{GS}	V _{GS} =10V, V _{DS} =50V, I _D =1.3A		60		nC
Gate to Drain Charge		Q_{GD}	I _G =100μA (Note1, 2)		60		nC
Turn-ON Delay Time		t _{D(ON)}			300		ns
Rise Time		t _R	$V_{GS}=10V, V_{DD}=30V, I_{D}=0.5A,$		300		ns
Turn-OFF Delay Time		t _{D(OFF)}	R _G =25Ω (Note1, 2)		800		ns
Fall-Time		t _F	~ *	7	380		ns
SOURCE- DRAIN DIODE RATI	NGS AND	CHARACTE	RISTICS	J_{LL}			
Maximum Body-Diode Continuous Current		Is	18 108			150	Α
Maximum Body-Diode Pulsed Current		I _{SM}	47,600			600	Α
Drain-Source Diode Forward Voltage		V_{SD}	I_{SD} =75A, V_{GS} =0V			1.3	V
Notes: 1 Pulse Test: Pulse width < 300us Duty cycle < 2%							
Essentially independent of operating temperature.							

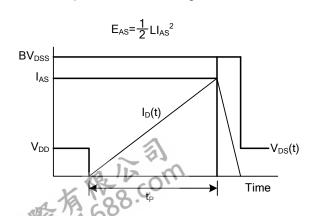


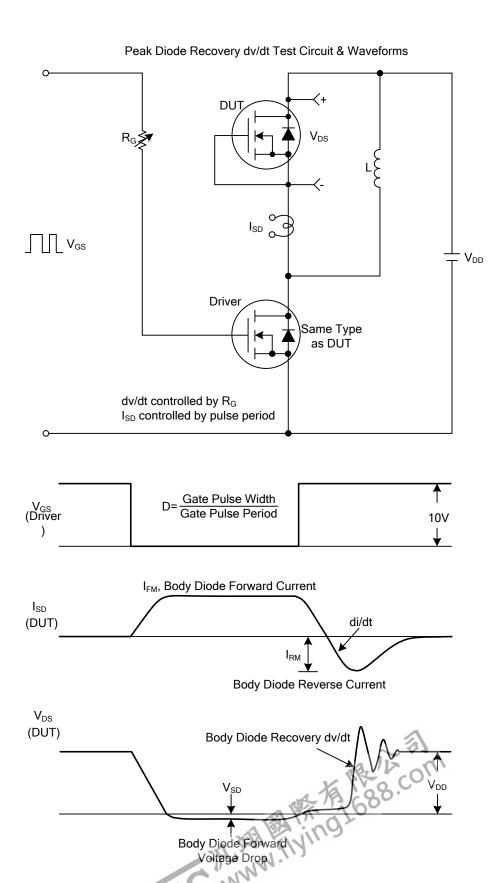
■ TEST CIRCUITS AND WAVEFORMS

Gate Charge Test Circuit


Gate Charge Waveforms


Resistive Switching Test Circuit


Resistive Switching Waveforms


Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

■ TEST CIRCUITS AND WAVEFORMS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

