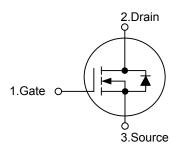


UNISONIC TECHNOLOGIES CO., LTD

UTT24N06 Power MOSFET

24A, 60V N-CHANNEL ENHANCEMENT MODE MOSFET

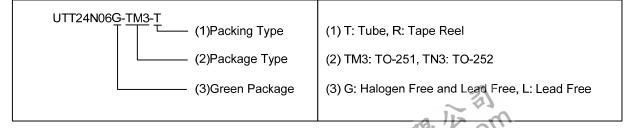
■ DESCRIPTION

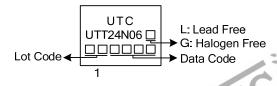

The UTC **UTT24N06** is an N-Channel enhancement mode MOSFET, it uses UTC's advanced technology to provide the customers with a minimum on state resistance and low gate charge, etc.

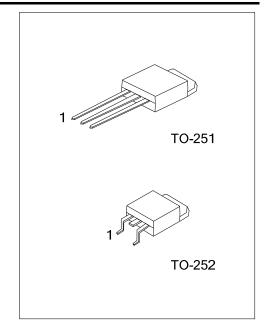
The UTC **UTT24N06** is suitable for switching application in Industry and converter application in LED TV, etc.

■ FEATURES

- * $R_{DS(ON)}$ < 40 m Ω @ V_{GS} =10V, I_{DS} =12A $R_{DS(ON)}$ < 50 m Ω @ V_{GS} =5V, I_{DS} =11A
- * Low R_{DS(ON)}


■ SYMBOL


■ ORDERING INFORMATION


Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT24N06L-TM3-T	UTT24N06G-TM3-T	TO-251	G	D	S	Tube	
UTT24N06L-TN3-R	UTT24N06G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

www.unisonic.com.tw 1 of 4

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		$V_{ t DSS}$	60	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current	Continuous	I_{D}	24	Α
Pulsed Drain Current	Pulsed (Note 2)	I_{DM}	96	Α
Avalanche Current (Note 3)		I_{AR}	17.8	Α
Avalanche energy	Single Pulsed (Note 3)	E _{AS}	160	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	3.27	V/nS
Power Dissipation		P_D	60	W
Junction Temperature		T_J	+150	°C
Storage Temperature Range		T_{STG}	-55 ~ +150	°C

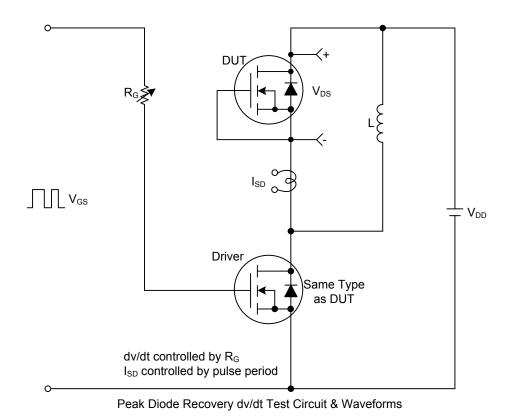
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

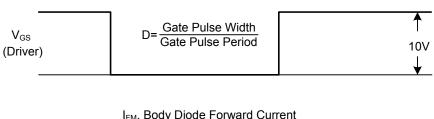
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 1.0mH, I_{AS} = 17.8A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 4. $I_{SD} \le 12A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

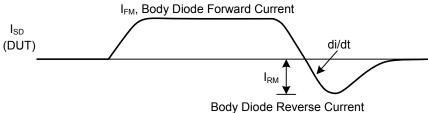
THERMAL CHARACTERISTICS

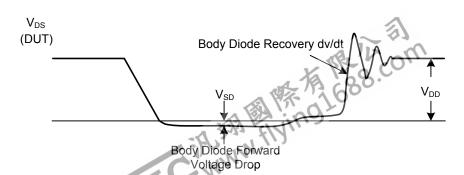
PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	110	°C/W	
Junction to Case	θ_{JC}	2.1	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_J =25°C unless otherwise noted)

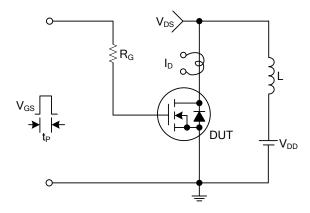

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV_{DSS}	$I_D=250\mu A, V_{GS}=0V$	60			V			
Zero Gate Voltage Drain Current	I_{DSS}	V_{DS} =48V, V_{GS} =0V			1	μΑ			
Gate Leakage Current	I_{GSS}	V_{GS} =±20V, V_{DS} =0V			±100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{DS}=250\mu A$			3.0	V			
Drain-Source On-State Resistance	D	V _{GS} =10V, I _{DS} =12A V _{GS} =5.0V, I _{DS} =11A			40	mΩ			
(Note 1)	R _{DS(ON)}				50	mΩ			
DYNAMIC PARAMETERS (Note 2)									
Input Capacitance	C _{ISS}			1080		pF			
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		130		pF			
Reverse Transfer Capacitance	C_{RSS}			85		pF			
SWITCHING PARAMETERS (Note 2)									
Total Gate Charge (Note 1)	Q_G	V _{DS} =30V, V _{GS} =10V, I _D =1.3A -I _G =100μA (Note 1, 2)		115		nC			
Gate to Source Charge	Q_GS			6		nC			
Gate to Drain Charge	Q_GD			8		nC			
Turn-on Delay Time (Note 1)	t _{D(ON)}	V _{DS} =30V, V _{GS} =10V, I _D =0.5A,		36		ns			
Rise Time	t_{R}			49		ns			
Turn-off Delay Time	t _{D(OFF)}	R _G =25Ω (Note 1, 2)		320		ns			
Fall-Time	t _F			108		ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuous Current	Is	TE PER COL			12	Α			
Maximum Body-Diode Pulsed Current	I _{SM}				48	Α			
Drain-Source Diode Forward Voltage (Note 1)	V_{SD}	I _S =12A, V _{GS} =0V		8.0	1.3	V			
Reverse Recovery Time (Note 1)	t _{rr}	l _s =12A, V _{GS} =0V		124		ns			
Reverse Recovery Charge	Q _{rr}	dl _F /dt=100A/µs		165		μC			

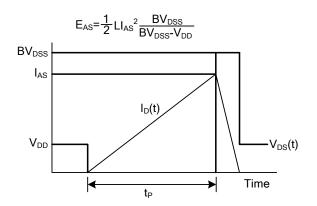

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle≤2%.

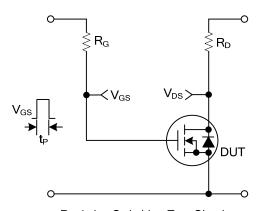

2. Essentially independent of operating temperature.

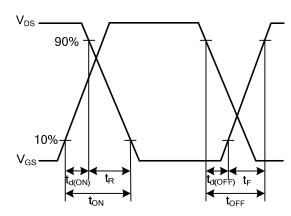


■ TEST CIRCUITS AND WAVEFORMS






■ TEST CIRCUITS AND WAVEFORMS


Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

Resistive Switching Test Circuit

Resistive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.