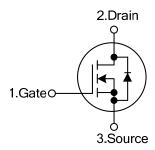

UTT30N08 Preliminary Power MOSFET

80V, 30A N-CHANNEL POWER MOSFET

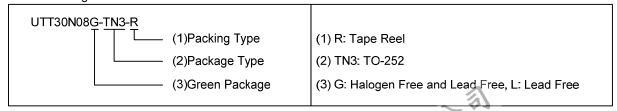
■ DESCRIPTION

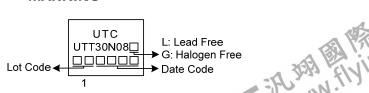
The UTC **UTT30N08** is an N-channel mode power MOSFET using UTC's advanced technology to provide customers with planar stripe and DMOS technology. This technology allows a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.


The UTC **UTT30N08** is generally applied in high efficiency switch mode power supplies.

■ FEATURES

- * $R_{DS(ON)}{<}40m\Omega$ @ $V_{GS}{=}10V,\ I_{D}{=}30A$
- * High Switching Speed


■ SYMBOL


■ ORDERING INFORMATION

Ordering	Doolsone	Pin Assignment			Dooking		
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT30N08L-TN3-R	UTT30N08G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 5

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified) (Note 4)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain to Source Voltage		$V_{ t DSS}$	80	V	
Gate-Source Voltage			V_{GSS}	±20	V
Drain Current (Note 5)	Continuous	T _C =25°C	l _D	30	Α
		T _C =100°C		18	Α
	Pulsed (Note 2)		I_{DM}	90	Α
Avalanche Energy	Single Pulsed (Note 3)		E _{AS}	138	mJ
Power Dissipation (T _C =25°C)		P_D	54	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature		T_{STG}	-55 ~ + 150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

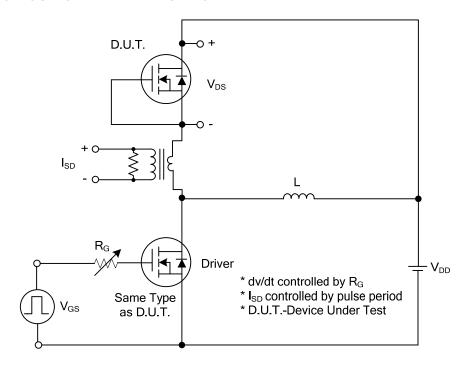
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating; Pulse width limited by maximum junction temperature.
- 3. L=4mH, I_{AS} =8.3A. V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C
- 4. Drain current limited by maximum junction temperature

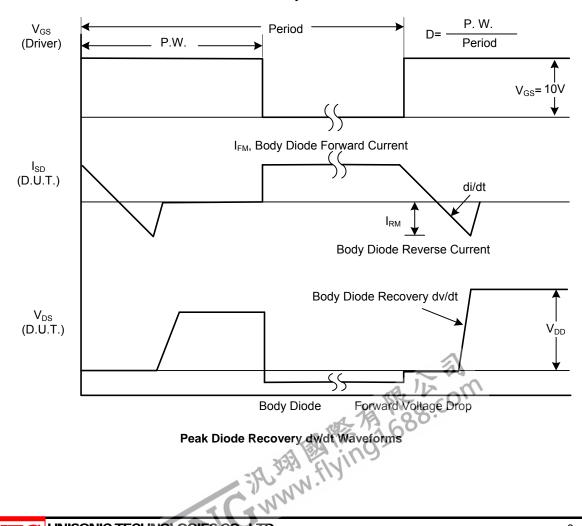
■ THERMAL DATA

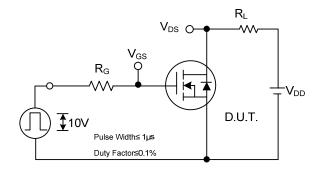
PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	110	°C/W	
Junction to Case	θ _{JC}	2.3	°C/W	

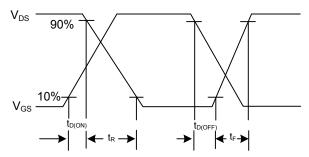
■ ELECTRICAL CHARACTERISTICS


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV_{DSS}	I _D =250μA, V _{GS} =0V, T _J =150°C	80			V	
Drain-Source Leakage Current		I_{DSS}	V _{DS} =80V, V _{GS} =0V,			1	μΑ	
Gate- Source Leakage Current	Forward	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA	
	Reverse		V _{GS} =-20V , V _{DS} =0V			-100	nA	
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	1.0		3.0	V	
Static Drain-Source On-State Resistance		D	V_{GS} =10V, I_D =30A			40	mΩ	
		R _{DS(ON)}	V _{GS} =4.5V, I _D =15A			50	mΩ	
DYNAMIC PARAMETERS								
Input Capacitance		C_{ISS}			1810		pF	
Output Capacitance		Coss	V _{DS} =25, V _{GS} =0V, f=1.0MHz		160		pF	
Reverse Transfer Capacitance		C_{RSS}			140		pF	
SWITCHING PARAMETERS								
Total Gate Charge		Q_{G}	\\ -CO\\ \\ -10\\ -20A		61		nC	
Gate to Source Charge		Q_GS	V _{DS} =60V, V _{GS} =10V, I _D =30A (Note 1, 2)		12		nC	
Gate to Drain ("Miller") Charge		Q_GD	(Note 1, 2)		16		nC	
Turn-ON Delay Time		$t_{D(ON)}$			16		ns	
Rise Time		t_R	V_{DD} =30V, I_{D} =15A, R_{G} =4.7 Ω		18		ns	
Turn-OFF Delay Time		t _{D(OFF)}	(Note 1, 2)		50		ns	
Fall-Time		t_{F}			25		ns	
SOURCE- DRAIN DIODE RATIN	IGS AND CH	HARACTERIST	rics					
Maximum Body-Diode Continuous Current		I _S	WE DO			30	Α	
Maximum Body-Diode Pulsed Current		I _{SM}	18 108			120	Α	
Drain-Source Diode Forward Voltage		V_{SD}	I _{SD} =30A, V _{GS} =0V			1.4	V	

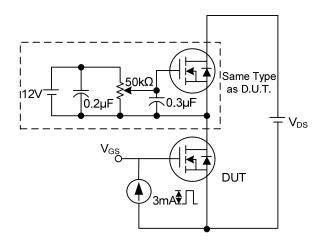
Notes: 1. Pulse Test: Pulse width≤300µs; Duty Cycle≤2%.

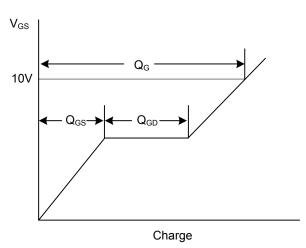

Essentially Independent of Operating Temperature Typical Characteristics


TEST CIRCUITS AND WAVEFORMS

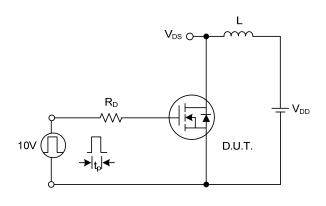


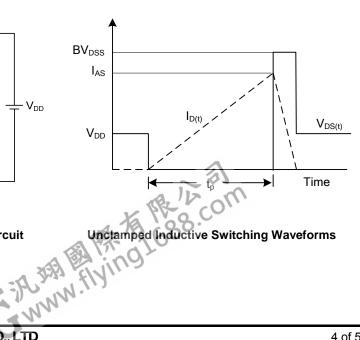
Peak Diode Recovery dv/dt Test Circuit


TEST CIRCUITS AND WAVEFORMS (Cont.)



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

