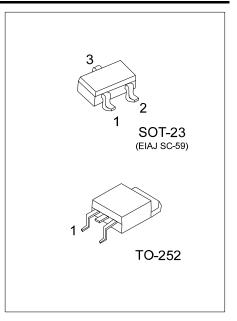
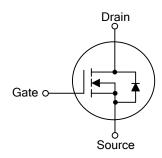
UTT3N06 Power MOSFET

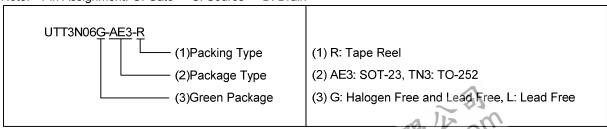

3A, 60V N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

■ DESCRIPTION

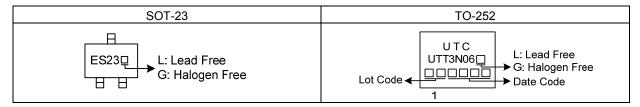

The UTC **UTT3N06** is an N-channel MOSFET, it uses UTC's advanced technology to provide the customers with a minimum on state resistance, high switch speed and low gate charge.

■ FEATURES

- * $R_{DS(ON)} \le 80 m\Omega$ @ $V_{GS} = 10 V$, $I_D = 3.0 A$ $R_{DS(ON)} \le 100 m\Omega$ @ $V_{GS} = 4.5 V$, $I_D = 2.0 A$
- * High switch speed
- * Low gate charge


■ SYMBOL

■ ORDERING INFORMATION


Ordering Number		Doolsons	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT3N06L-AE3-R	UTT3N06G-AE3-R	SOT-23	G	S	D	Tape Reel	
UTT3N06L-TN3-R	UTT3N06G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate S: Source D: Drain

<u>www.unisonic.com.tw</u> 1 of 4

MARKING

UTT3N06 Power MOSFET

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise specified)

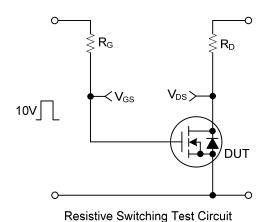
PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	60	V
Gate-Source Voltage		V_{GSS}	±20	V
Dunin Commont	Continuous	I_{D}	3	Α
Drain Current	Pulsed (Note 1)	I_{DM}	12	Α
Power Dissipation	SOT-23	C	1.25	W
	TO-252	P_D	3.13	W
Junction Temperature		T_J	-55 ~ + 150	°C
Storage Temperature Range		T_{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT	
Lunction to Ambient	SOT-23	0	100	°C/W	
Junction to Ambient	TO-252	ÐJA	40	°C/W	

Note: Surface Mounted on FR4 Board, t <10 sec.


ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS MI		TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV_{DSS}	I _D =250μA, V _{GS} =0V	60			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	μΑ
Gate-Source Leakage Current	Forward		V_{GS} =+20V, V_{DS} =0V			+100	nA
	Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$			3.0	V
Static Drain-Source On-State Resistance			V_{GS} =10V, I_D =3A			80	mΩ
Static Drain-Source On-State Re	esistance	$R_{DS(ON)}$	V _{GS} =4.5V, I _D =2.4A			100	mΩ
DYNAMIC PARAMETERS (Note	e 3)						
Input Capacitance	nput Capacitance				500		pF
Output Capacitance		C_{oss}	V_{GS} =0V, V_{DS} =25V, f=1.0MHz		65		pF
Reverse Transfer Capacitance		C_{RSS}			55		pF
SWITCHING PARAMETERS (Note 3)							
Total Gate Charge		Q_G	\/ =10\/ \/ =20\/ =1A		62		nC
Gate to Source Charge		Q_GS	V_{GS} =10V, V_{DS} =30V, I_{D} =1A $-R_{G}$ =100k Ω		5		nC
Gate to Drain Charge		Q_GD			5		nC
Turn-ON Delay Time		$t_{D(ON)}$			35		ns
Rise Time		t_{R}	V_{DD} =30V, I_D =1A, R_{GEN} =25 Ω ,		65		ns
Turn-OFF Delay Time		t _{D(OFF)}	V _{GS} =10V		296		ns
Fall-Time	all-Time				80		ns
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS							
Maximum Body-Diode Continuous Current (Note 2)		I _S				1	Α
			3			ı	А
Drain-Source Diode Forward Voltage		V _{SD}	I _S =1A, V _{GS} =0V	0		1.2	V
(Note 2)			IS-IA, VGS-UV	1,		1.2	V

Notes: 1. Repetitive Rating: Pulse width limited by maximum junction temperature.

■ TEST CIRCUITS AND WAVEFORMS

90%

10%

t_{d(ON)}

t_R

t_{d(OFF)} t_F

t_{OFF}

Resistive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.