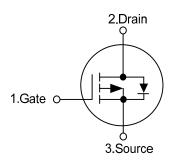


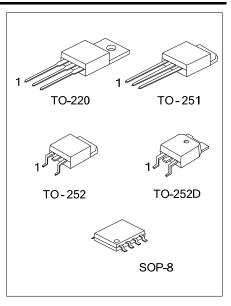
UNISONIC TECHNOLOGIES CO., LTD

UTT40P04 Power MOSFET

-50A, -40V P-CHANNEL POWER MOSFET

■ DESCRIPTION

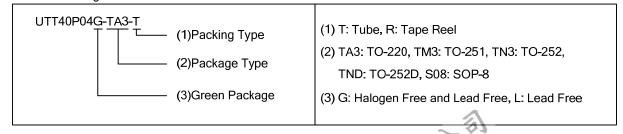

The UTC **UTT40P04** is a P-channel power MOSFET using UTC's advanced technology to provide the customers with high switching speed and a minimum on-state resistance. It can also withstand high energy in the avalanche.


This UTC **UTT40P04** is suitable for Inverter or Power supplies.

■ FEATURES

* $R_{DS(ON)}$ < 20m Ω @ V_{GS} =-10V, I_D =-12.7A, $R_{DS(ON)}$ < 30 m Ω @ V_{GS} =-4.5V, I_D =-10.4A

■ SYMBOL



■ ORDERING INFORMATION

Ordering Number		Dealtes	Pin Assignment							Dooking	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UTT40P04L-TA3-T	UTT40P04G-TA3-T	TO-220	G	D	S	ı	ı	-	-	ı	Tube
UTT40P04L-TM3-T	UTT40P04G-TM3-T	TO-251	G	D	S	ı	ı	-	-	ı	Tube
UTT40P04L-TN3-R	UTT40P04G-TN3-R	TO-252	G	D	S	-	-	-	-	-	Tape Reel
UTT40P04L-TND-R	UTT40P04G-TND-R	TO-252D	G	D	S	-	-	-	-	-	Tape Reel
UTT40P04L-S08-R	UTT40P04G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 6

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	-40	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current	Continuous	Package limited	I _D	-50	Α
		Silicon limited		-58	Α
	Pulsed		I_{DM}	-100	Α
Single Pulsed Avalanche Energy (Note 2)		E _{AS}	337	mJ	
Power Dissipation	T _C =25°C	TO-220	P _D	125	W
		TO-251/TO-252 TO-252D		55	W
		SOP-8		3.4	W
	T _A =25°C	TO-220		2	W
		TO-251/TO-252 TO-252D		1.1	W
		SOP-8		1.6	W
Junction Temperature		T_J	-55 ~ +150	°C	
Storage Temperature		T_{STG}	-55 ~ + 150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

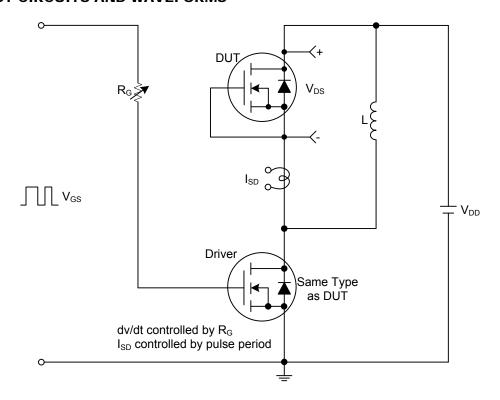
■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
	TO-220		62.5	°C/W
Junction to Ambient	TO-251/TO-252 TO-252D	θ_{JA}	110	°C/W
	SOP-8		75 (Note)	°C/W
	TO-220		1	°C/W
Junction to Case	TO-251/TO-252 TO-252D	θ_{JC}	2.27	°C/W
	SOP-8		36.7	°C/W

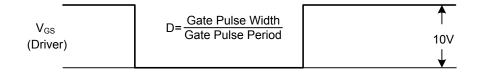
Note: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

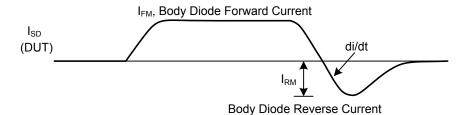
^{2.} Starting T_J = 25°C, L = 3mH, I_{AS} = 15A, V_{DD} = 40V, V_{GS} = 10V.

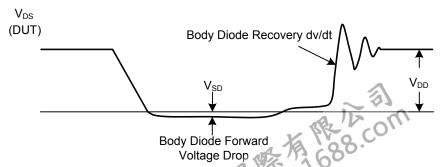
ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV_{DSS}	I_D =-250 μ A, V_{GS} =0V	-40			V
Drain-Source Leakage Current	I_{DSS}	V _{DS} =-32V, V _{GS} =0V			-1	μΑ
Gate- Source Leakage Current	I _{GSS}	V_{GS} =+20V, V_{DS} =0V			+100	nA
Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1	-1.8	-3	V
Static Drain-Source On-State Resistance	e R _{DS(ON)}	V _{GS} =-10V, I _D =-12.7A		17	20	mΩ
Static Dialii-Source Oil-State Resistance		V _{GS} =-4.5V, I _D =-10.4A		24	30	mΩ
DYNAMIC PARAMETERS						
Input Capacitance	C_{ISS}			2085	2775	рF
Output Capacitance	Coss	V_{GS} =0V, V_{DS} =-20V, f=1.0MHz		360	480	pF
Reverse Transfer Capacitance	C_{RSS}			210	310	pF
Gate Resistance	R_{G}	f=1.0MHz		4.6		Ω
SWITCHING PARAMETERS	_			a		
	Q_{G}	V _{GS} =0~-10V, V _{DD} =-20V,		230		nC
Total Gate Charge		I _D =-12.7A		230		110
Total Gate Griange		V _{GS} =0~-5V, V _{DD} =-20V,		120		nC
		I _D =-12.7A		120		110
Gate to Source Charge	Q_GS	V _{DD} =-20V, I _D =-12.7A		17		nC
Gate to Drain Charge	Q_GD	V _{DD} =-20V, I _D =-12.7A		21		nC
Turn-ON Delay Time	$t_{D(ON)}$			36		ns
Rise Time	t_R	V_{DD} =-20V, I_{D} =-12.7A, R_{GEN} =6 Ω ,		76		ns
Turn-OFF Delay Time	t _{D(OFF)}	V _{GS} =-10V		600		ns
Fall-Time	t_{F}			380		ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACTE	RISTICS				
Drain-Source Diode Forward Voltage	V_{SD}	I _S =-12.7A, V _{GS} =0V (Note 1)		-0.8	-1.2	V
Body Diode Reverse Recovery Time	t _{rr}	L= 12.7A di/dt=100A/up		29	44	ns
Body Diode Reverse Recovery Charge	Q _{rr}	I _F =-12.7A, di/dt=100A/μs		26	40	μC

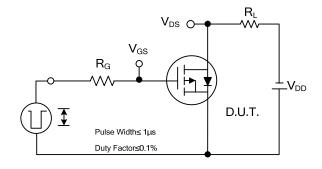
Notes: 1. Pulse Test: Pulse Width < $300\mu s$, Duty cycle < 2.0%.

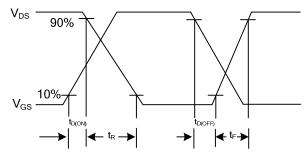

2. Starting T_J = 25°C, L = 3mH, I_{AS} = 15A, V_{DD} = 40V, V_{GS} = 10V.




■ TEST CIRCUITS AND WAVEFORMS

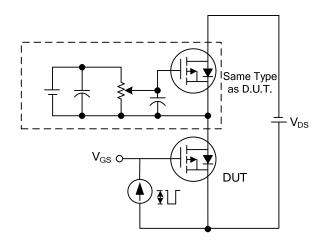
Peak Diode Recovery dv/dt Test Circuit

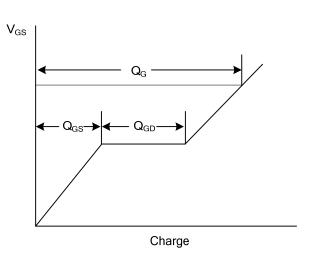




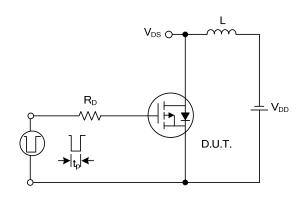
Peak Diode Recovery dv/dt Test Circuit and Waveforms

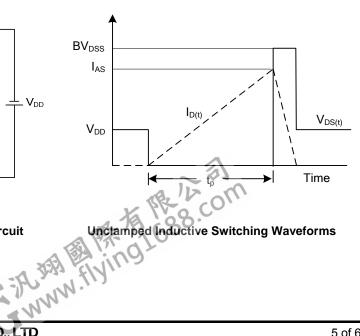
Peak Diode Recovery dv/dt Waveforms


TEST CIRCUITS AND WAVEFORMS

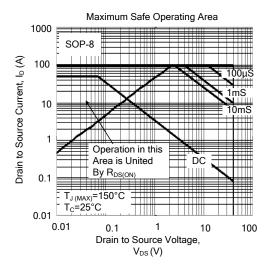


Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit


Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.