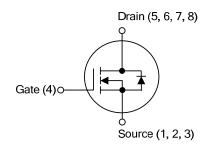
UTT60N03H-H

Preliminary

Power MOSFET

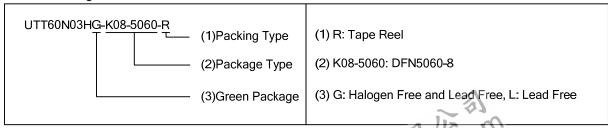
60A, 30V N-CHANNEL POWER MOSFET

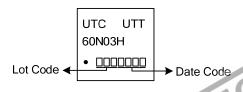
■ DESCRIPTION


The UTC **UTT60N03H-H** is a N-channel Power MOSFET, it uses UTC's advanced technology to provide the customers with high switching speed, low C_{RSS} and low gate charge.

The UTC **UTT60N03H-H** is suitable for high power density DC/DC and embedded DC/DC applications.

- * $R_{DS(ON)}$ < 5.5m Ω @ V_{GS} =10V, I_{D} =10A $R_{DS(ON)}$ < 8.5m Ω @ V_{GS} =4.5, I_{D} =8A
- * High switching speed
- * Low C_{RSS}
- *Low gate change


■ SYMBOL


■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment							Dooking	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UTT60N03HL-K08-5060-R	UTT60N03HG-K08-5060-R	DFN5060-8	S	S	S	G	D	D	D	D	Tape Reel
N. C.											

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

1 the state of the

<u>www.unisonic.com.tw</u> 1 of 4

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

			1			
PARAMETER			SYMBOL	RATINGS	UNIT	
Drain-Source Voltage			$V_{ extsf{DSS}}$	30	V	
Gate-Source Voltage		V_{GSS}	+20, -16	V		
Drain Current	Continuous	T _C =25°C	I_{D}	60 (Note 6)	Α	
(T _J =150°C)	Pulsed (t=300	us)	I _{DM}	80	Α	
Continuous Source-Drain Diode T _C =25°C			14.1 (Note 6)	_		
Current		T _A =25°C	- I _S	3.2 (Note 2, 3)	A	
Avalanche Current (L=0.1mH)		I _{AR}	15	Α		
Single Pulsed Avalanche Energy (L=0.1mH)		E _{AS}	11.25	mJ		
Power Dissipation T _C =25°C		P_D	31.2	W		
Junction Temperature		TJ	-55 ~ +150	°C		
Storage Temperature Range		T _{STG}	-55 ~ +150	°C		
Soldering Recommendations (Peak Temperature) (Note 4)			260	°C		

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

PARAMETER	_	SYMBOL	RATINGS	UNIT	
Junction to Ambient (Note 2, 5)	t≤10s	θ_{JA}	34	°C/W	
Junction to Case (Drain)	Steady State	θ_{JC}	4	°C/W	

Notes: 1. Based on T_C=25°C

- 2. Surface mounted on 1"x1" FR4 board.
- 3. t=10s
- 4. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- 5. Maximum under steady state conditions is 70°C/W
- 6. Package limited

ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltag	е	BV _{DSS}	I _D =250μA, V _{GS} =0V	30			V		
V _{DS} Temperature Coefficient		$\triangle V_{DS}/T_{J}$	I _D =250uA		20		mV/°C		
V _{GS(TH)} Temperature Coefficient		$\triangle V_{GS(TH)}/T_J$	ID-250UA		-4.6		IIIV/ C		
Drain-Source Leakage Current		I _{DSS}	V_{DS} =30V, V_{GS} =0V			1	μA		
			V _{DS} =30V, V _{GS} =0V, T _J =55°C			10	μA		
Gate-Source Leakage Current	Forward	I _{GSS}	V_{GS} =+20V, V_{DS} =0V			+100	nA		
	Reverse	1688	V _{GS} =-16V, V _{DS} =0V			-100	nA		
ON CHARACTERISTICS									
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.1		2.2	V		
Static Drain-Source On-State Re	esistance	R _{DS(ON)}	V _{GS} =10V, I _D =10A			5.5	mΩ		
(Note 1)			V _{GS} =4.5V, I _D =8A			8.5	11122		
On State Drain Current		$I_{D(ON)}$	V _{DS} ≥5V, V _{GS} =10V	30			Α		
DYNAMIC PARAMETERS (Note	e 2)								
Input Capacitance		C _{ISS}			1450		pF		
Output Capacitance		Coss	V_{GS} =0V, V_{DS} =15V, f=1MHz		445		pF		
Reverse Transfer Capacitance		C _{RSS}			38		pF		
SWITCHING PARAMETERS									
Total Gate Charge		Q _G	V _{GS} =10V, V _{DS} =15V, I _D =10A		19.4	29	nC		
			V _{GS} =4.5V, V _{DS} =15V, I _D =10A		9.4	14	nC		
Gate to Source Charge		Q _{GS}	66 1 , 26 1 , 5		4				
Gate to Drain Charge		Q_{GD}			1.8		nC		
Gate Resistance		R _G	f=1MHz	0.4	1.65	3.3	Ω		
Turn-ON Delay Time		t _{D(ON)}			9	18	ns		
Rise Time		t _R	V _{DD} =15V, I _D ≈10A, R _L =1.5Ω,		8	16	ns		
Turn-OFF Delay Time		t _{D(OFF)}	V_{GEN} =10V, R_G =1 Ω		18	36	ns		
Fall-Time		t _F			8	16	ns		
Turn-ON Delay Time		t _{D(ON)}			15	30	ns		
Rise Time		t _R	V _{DD} =15V, I _D ≈10A, R _L =1.5Ω,		12	24	ns		
Turn-OFF Delay Time		t _{D(OFF)}	V_{GEN} =4.5V, R_{G} =1 Ω		18	36	ns		
Fall-Time		t_{F}			9	18	ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuo	us Current	Is	T _C =25°C			14.1	Α		
Maximum Body-Diode Pulsed Co	urrent	I _{SM}				80	Α		
(Note 1)									
Drain-Source Diode Forward Vo		V _{SD}	I _S =3A		0.76	1.1	V		
Body Diode Reverse Recovery 1		t _{rr}	_		24	48	ns		
Body Diode Reverse Recovery (Charge	Q _{rr}	I _F =10A, dI/dt=100A/μs,		14	28	nC		
Reverse Recovery Fall Time		ta	T _J =25°C		12		ns		
Reverse Recovery Rise Time		t _b			12		ns		

Notes: 1. Pulse test; pulse width ≤30µs, duty cycle ≤2%

2. Guaranteed by design, not subject to production testing

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

