UNISONIC TECHNOLOGIES CO., LTD

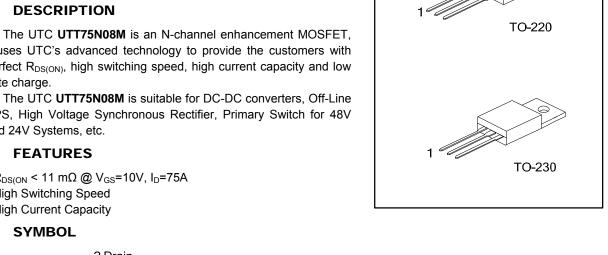
UTT75N08M

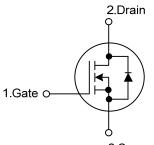
Preliminary

Power MOSFET

75A, 80V N-CHANNEL **POWERTRENCH MOSFET**

DESCRIPTION

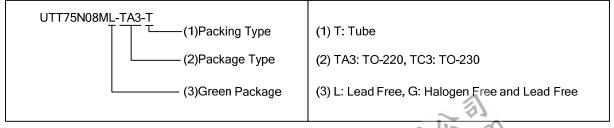

it uses UTC's advanced technology to provide the customers with perfect R_{DS(ON)}, high switching speed, high current capacity and low gate charge.


The UTC UTT75N08M is suitable for DC-DC converters, Off-Line UPS, High Voltage Synchronous Rectifier, Primary Switch for 48V and 24V Systems, etc.

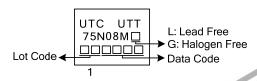
FEATURES

- * $R_{DS(ON}$ < 11 m Ω @ V_{GS} =10V, I_D =75A
- * High Switching Speed
- * High Current Capacity

SYMBOL



3.Source


ORDERING INFORMATION

Ordering Number		Doolsono	Pin Assignment			Dealing	
Lead Free	Halogen Free Package		1	2	3	Packing	
UTT75N08ML-TA3-T	UTT75N08MG-TA3-T	TO-220	G	D	S	Tube	
UTT75N08ML-TC3-T	UTT75N08MG-TC3-T	TO-230	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

www.unisonic.com.tw 1 of 6

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	80	V
Gate-Source Voltage		V _{GSS}	±20	V
D : 0 /	Continuous	I _D	75	Α
Drain Current	E Voltage Continuous	I _{DM}	300	Α
Single Pulsed Avalanche Energy (Note 3)		E _{AS}	125	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns
Peak Diode Recovery dv/dt (Note 4) Power Dissipation TO-220	TO-220	J	125	W
	TO-230	P_{D}	167	W
Junction Temperature		TJ	150	°C
Storage Temperature Range		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

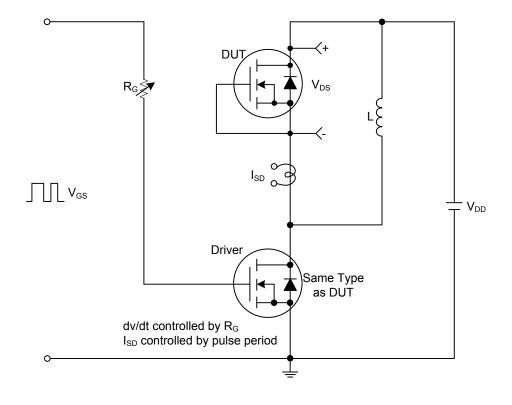
- 2. Repetitive Rating: Pulse width limited by T_J.
- 3. L=0.1mH, I_{AS} =50A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 30A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

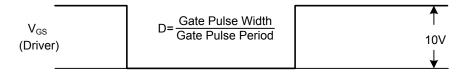
■ THERMAL CHARACTERISTICS

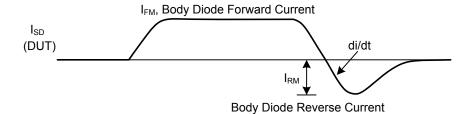
PARAMETER		SYMBOL	RATINGS	UNIT
lunction to Ambient	TO-220	0	62.5	°C/W
Junction to Ambient	TO-230	θ_{JA}	55	°C/W
lunction to Coop	TO-220	0	1	°C/W
Junction to Case	TO-230	θ_{JC}	0.7	°C/W

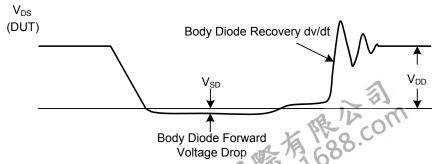
■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise noted)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						l.	
Drain-Source Breakdown Voltag	е	BV _{DSS}	I _D =250μA, V _{GS} =0V	80			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =80V, V _{GS} =0V			1	μA
Cata Cauraa Laakaga Currant	Forward	GSS	V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$			3.0	V
Static Drain-Source On-State Re	esistance	R _{DS(ON)}	V _{GS} =10V, I _D =75A			11	mΩ
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			4000		pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		320		pF
Reverse Transfer Capacitance		C_{RSS}			120		pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_G	\\ -10\\ \\ -50\\		300		nC
Gate to Source Charge		Q_GS	V _{GS} =10V, V _{DD} =50V, I _D =1.3A, I _G =100μA		14		nC
Gate to Drain Charge		Q_GD	I _D =1.3A, I _G =100μA		16		nC
Turn-ON Delay Time		t _{D(ON)}			56		ns
Rise Time		t_R	V _{DD} =30V, I _D =0.5A,		65		ns
Turn-OFF Delay Time		t _{D(OFF)}	V_{GS} =10V, R_{G} =25 Ω	3	780		ns
Fall-Time		t_{F}	19. V	5	200		ns
SOURCE- DRAIN DIODE RATII	NGS AND	CHARACTERIS	STICS).			
Maximum Continuous Drain-Sou	rce Diode		12 600			75	^
Forward Current		I _S	A LA JEN AND AND AND AND AND AND AND AND AND AN			75	Α
Maximum Pulsed Drain-Source Diode		1 26	162 1100			300	Α
Forward Current		I _{SM}	1,417.			300	А
Drain-Source Diode Forward Voltage		V_{SD}	I _{SD} =75A			1.4	V

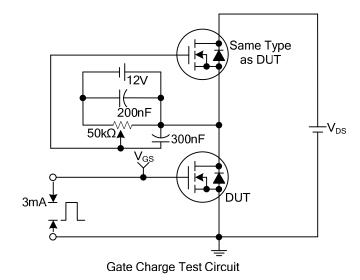

UTT75N08M Preliminary Power MOSFET

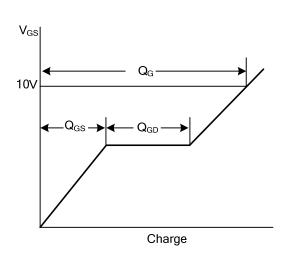

Reverse Recovery Time	t _{rr}	$V_{GS} = 0 \text{ V}, I_{SD} = 30\text{A},$	48	ns
Reverse Recovery Charge	Q_{RR}	di/dt = 100 A/µs (Note 1)	62	nC

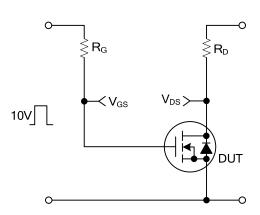

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle≤2%.


^{2.} Essentially independent of operating temperature.

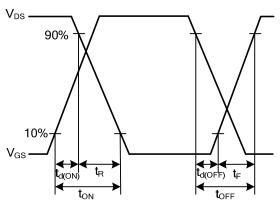
■ TEST CIRCUITS AND WAVEFORMS

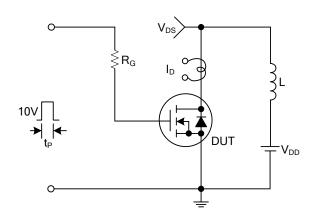


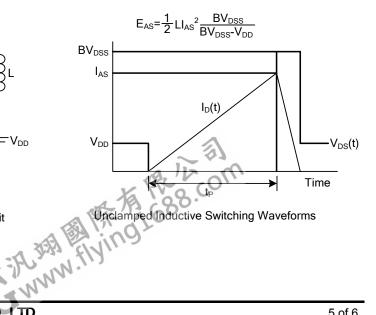



Peak Diode Recovery dv/dt Test Circuit and Waveforms

TEST CIRCUITS AND WAVEFORMS (Cont.)




Gate Charge Waveforms


Resistive Switching Test Circuit

Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

