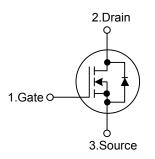


Power MOSFET

TO-263

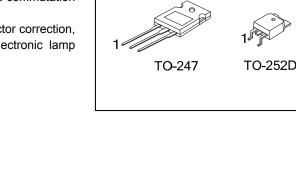
60V, 80A N-CHANNEL POWER MOSFET

DESCRIPTION


The UTC **UTT80N06** is a N-channel enhancement mode power MOSFET using UTC's advanced technology to provide customers with a minimum on-state resistance and high switching speed. It can also withstand high energy pluse in the avalanche and commutation mode.

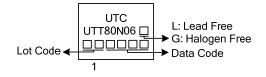
The UTC **UTT80N06** is suitable for active power factor correction, high efficient switched mode power supplies and electronic lamp ballast based on half bridge topology, etc.

FEATURES


- * $R_{DS(ON)}$ < 10m Ω @ V_{GS} =10V, I_D =40A
- * High switching speed
- * Improved dv/dt capability

SYMBOL

ORDERING INFORMATION


Ordering	Package	Pin Assignment			Decking		
Lead Free	Lead Free Halogen Free		1	2	3	Packing	
UTT80N06L-TA3-T	06L-TA3-T UTT80N06G-TA3-T		G	D	S	Tube	
UTT80N06L-TND-R	ITT80N06L-TND-R UTT80N06G-TND-R		G	D	S	Tape Reel	
UTT80N06L-TQ2-T	UTT80N06L-TQ2-T UTT80N06G-TQ2-T		G	D	S	Tube	
UTT80N06L-TQ2-R	UTT80N06G-TQ2-R	TO-263	G	D	S	Tape Reel	
UTT80N06L-T47-T	UTT80N06L-T47-T UTT80N06G-T47-T		G	D	S	Tube	
Note: Pin Assignment: G: (Gate D: Drain S: Source	9					
Note: Pin Assignment: G: Gate D: Drain S: Source UTT80N06G-TA3-T (1)Packing Type (1) T: Tube, R: Tape Reet (2)Package Type (2)Package Type (2)Package Type (3)Green Package (3)G: Halogen Free and Lead Free, L: Lead Free							

TO-220

www.unisonic.com.tw Copyright © 2017 Unisonic Technologies Co., Ltd

MARKING

Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified) (Note 2)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	60	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Drain Current	T _C =25°C	1	80	А	
	Continuous T _C =100°C	I _D	65	А	
	Pulsed (Note 3)	I _{DM}	320	А	
Avalanche Current (Note 3)		I _{AR}	80	А	
Avalanche Energy	Single Pulsed (Note 4)	E _{AS}	200	mJ	
Peak Diode Recovery dv/dt (Note 5)		dv/dt	3.2	V/nS	
Power Dissipation	TO-220/TO-263		147	W	
	TO-252D	PD	50	W	
	TO-247		230	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Drain current limited by maximum junction temperature.
- 3. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 4. L =0.06mH, I_{AS} = 80A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C.
- 5. $I_{SD} \le 80A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$.

THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-220/TO-263		62.5		
	TO-252D	θ _{JA}	110	°C/W	
	TO-247		30		
	TO-220/TO-263		0.85		
	TO-252D	θ _{JC}	2.5	°C/W	
	TO-247		0.54		

Power MOSFET

■ ELECTRICAL CHARACTERISTICS (T_c = 25°C, unless otherwise specified)

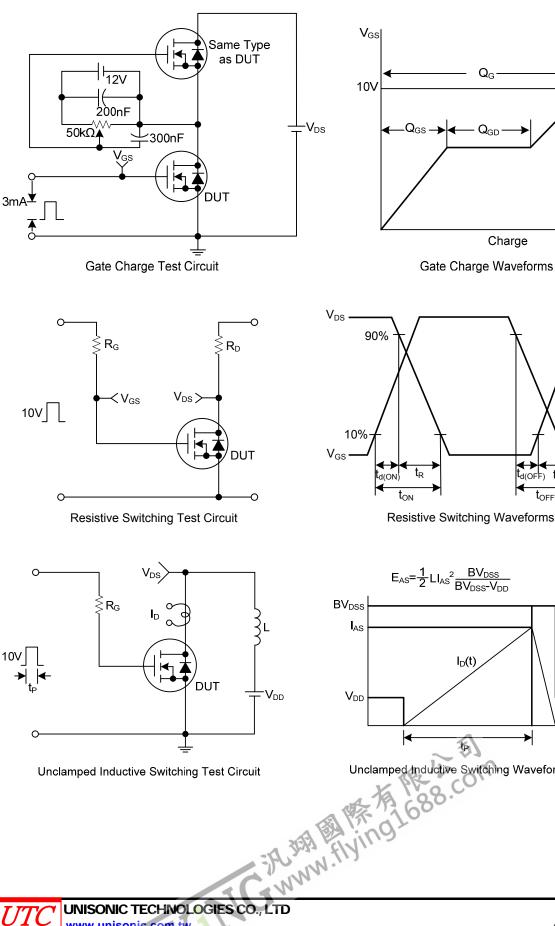
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V, T _J =25°C	60			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	μA
Cata Source Leakage Current	ward	- I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current Rev	erse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =40A			10	mΩ
DYNAMIC PARAMETERS			_				
Input Capacitance Output Capacitance		CISS			3800		рF
		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		375		pF
Reverse Transfer Capacitance		C _{RSS}			320		рF
SWITCHING PARAMETERS			_				
Total Gate Charge at 10V		Q_{G}	V _{GS} =10V, V _{DS} =50V, I _D =1.3A (Note 1, 2)		93		nC
Gate to Source Charge		Q_{GS}			15		nC
Gate to Drain Charge		Q_{GD}			28		nC
Turn-ON Delay Time		t _{D(ON)}			90		ns
Rise Time		t _R	V _{DD} =30V, I _D =0.5A, R _G =25Ω		172		ns
Turn-OFF Delay Time		t _{D(OFF)}	(Note 1, 2)		786		ns
Fall-Time		t⊨			330		ns
SOURCE- DRAIN DIODE RATINGS	AND CHAR	ACTERIST	ICS			_	
Maximum Body-Diode Continuous Current		ls				80	Α
Maximum Body-Diode Pulsed Current		I _{SM}				320	Α
Drain-Source Diode Forward Voltage		V_{SD}	I _S =80A, V _{GS} =0V			1.4	V
Reverse Recovery Time		t _{rr}			74		nS
Reverse Recovery Charge		Qrr	$-I_{S}$ =30A, V _{GS} =0V, dl/dt=100A/µs		92		nC
Notos: 1 Dulas Test: Dulas width < 200us. Du		1 4 00/	•	•	•	•	

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%

2. Essentially independent of operating temperature typical characteristics

 Q_G

 Q_{GD}


Charge

t_{d(OFF)}

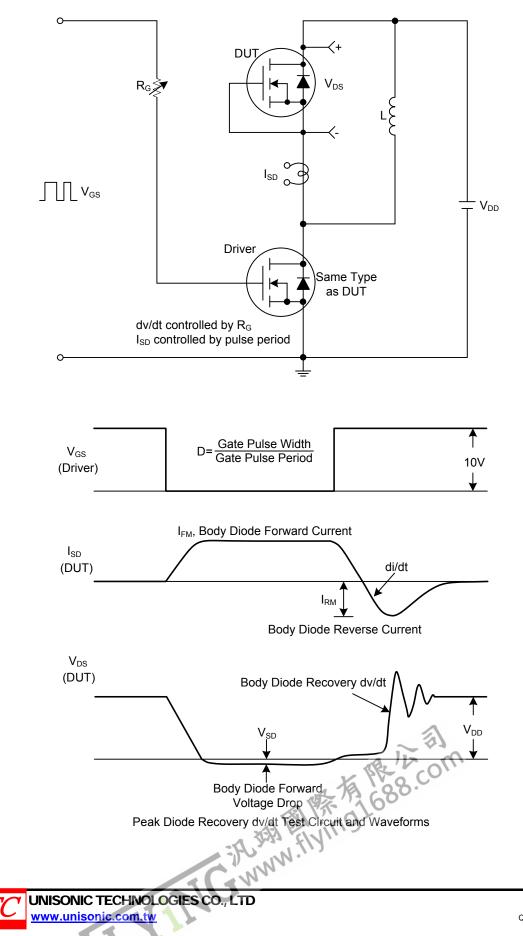
t_F

torf

TEST CIRCUITS AND WAVEFORMS

V_{DS}(t)

Time


►

ŧР Unclamped Inductive Switching Waveforms

UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw

Unclamped Inductive Switching Test Circuit

■ TEST CIRCUITS AND WAVEFORMS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

