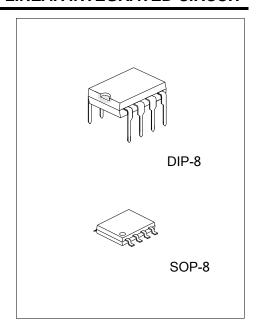
UNISONIC TECHNOLOGIES CO., LTD

UU6032B

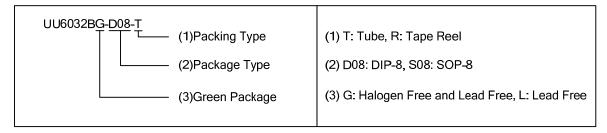
Advance

LINEAR INTEGRATED CIRCUIT

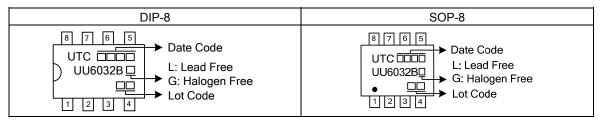

AUTOMOTIVE TOGGLE SWITCH IC

DESCRIPTION

The bipolar integrated circuit UTC **UU6032B** is designed as a toggle switch. The device, which has a defined power-on status, can be used to control electrical loads, for example, fog lamps, high/low beam or heated windows for automotive applications.

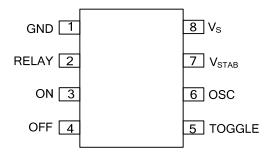

■ FEATURES

- * Relay driver with Z-diode
- * RC oscillator determines switching characteristics
- * Debounced input for toggle switch
- * Three debounced inputs: ON, OFF and TOGGLE
- * RF interference protection
- * Load-dump protection



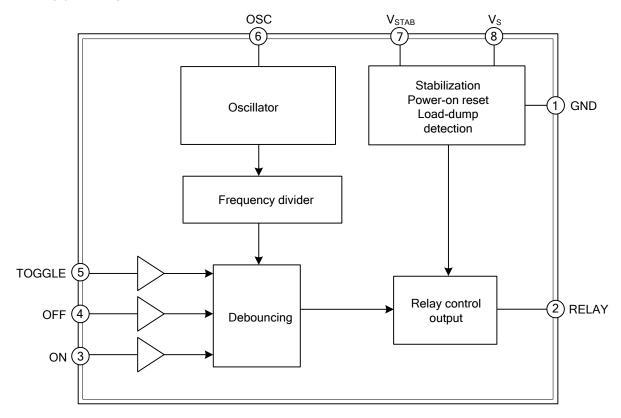
■ ORDERING INFORMATION

Ordering Number		Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
UU6032BL-D08-T	UU6032BG-D08-T	DIP-8	Tube	
UU6032BL-S08-R	UU6032BG-S08-R	SOP-8	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 5


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	GND	Reference point, ground
2	RELAY	Relay control output
3	ON	Switch-on input
4	OFF	Switch-off input
5	TOGGLE	Toggle input
6	osc	RC oscillator input
7	V_{STAB}	Stabilized voltage
8	Vs	Supply voltage

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Operating Voltage, Static, 5 minutes	V_{Batt}	24	V
Ambient Temperature Range	T _A	-40~+125	°C
Junction Temperature	T_J	150	°C
Storage Temperature Range	T _{STG}	-55~+125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCE

PARAMETER		SYMBOL	RATINGS	UNIT
Lunation Ambient	DIP-8	θја	110	K/W
Junction Ambient	SOP-8		160	K/W

■ ELECTRICAL CHARACTERISTICS

V_{Batt}=13.5V, T_{AMB}=25°C, reference point ground, unless otherwise specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	V _{Batt}	R ₁ ≥510Ω			16	V
		t < 5min	6		24	V
			0			V
7/0		t < 60min			18	-
5V Supply	V ₈ , V ₇	Without R ₁ , C ₁ Pins 7 and 8	4.3		6.0	V
Stabilized Voltage	V ₇	V _{Batt} =12V, Pin 7	4.8	5.0	5.2	V
Undervoltage Threshold	Vs	Power on Reset	3.0		4.2	V
Supply Current	Is	All Push Buttons Open, Pin8		1.3	2.0	mA
Internal Z-Diode	V_Z	I ₈ =10mA, Pin 8	13.5	14	16	V
Relay control output (Pin 2)						
Coturation Valtage	.,	I ₂ =200mA		1.2		V
Saturation Voltage	V ₂	I ₂ =300mA			1.5	V
Leakage Current	I _{Ikg}	V ₂ =14V		2	100	μΑ
Output Current	l ₂				300	mA
Output pulse current						
Load Dump Pulse	l ₂	t≤300ms			1.5	Α
Internal Z-Diode	V_Z	I ₂ =10mA	20	22	24	V
Oscillator input (f = 0.001~40 kHz,	see table 1) (Pin 6)				
Internal Discharge Resistance	R ₆	V ₆ =5V		4		kΩ
Switching Voltage	V_{6L}	Lower		8.0		V
Switching Voltage	V _{6H}	Upper		2.7		V
Input Current	-I ₆	V ₆ =0V			1	μA
Switching times						
Debounce Time	t ₃		5		7	cycles
Inputs ON, OFF, TOGGLE (Pins 3,	4 and 5)					
Switching Threshold Voltage	V _{3,4,5}		1.6	2.0	2.4	V
Internal Z-Diode	V_Z	I _{3, 4, 5} =10mA	6.5	7.1	8.0	V
Pull-Down Resistance	R _{3,4,5}	V _{3,4,5} =5V	13	20	50	kΩ

■ TYPICAL APPLICATION CIRCUIT

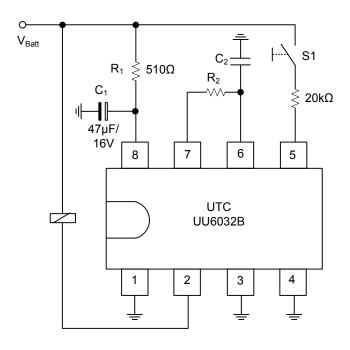


Figure 1. TOGGLE Function

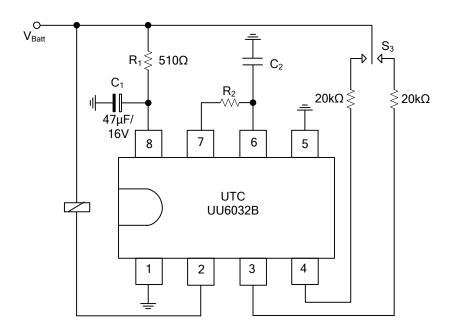


Figure 2. ON/OFF Function

■ TYPICAL APPLICATION CIRCUIT (Cont.)

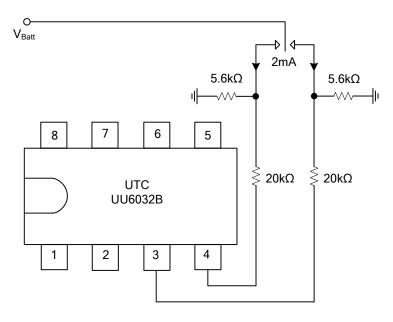


Figure 3. Increasing the contact current by parallel resistors

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.