UZ2085A

**Preliminary** 

LINEAR INTEGRATED CIRCUIT

# 3A ADJUSTABLE/FIXED LOW DROPOUT LINEAR REGULATOR

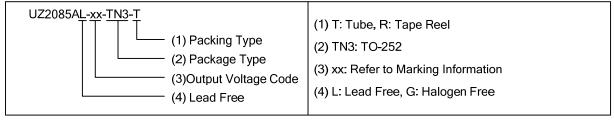
#### DESCRIPTION

The UTC UZ2085A series are low dropout three-terminal regulators with 3A output current capability. These devices have been optimized for low voltage applications including VTT bus termination in which transient response and minimum input voltage are critical.

Current limit is trimmed to ensure specified output current and controlled short-circuit current. On-chip thermal limitation provides protection against any combination of overload and ambient temperature that would create excessive junction temperature.



#### **FEATURES**

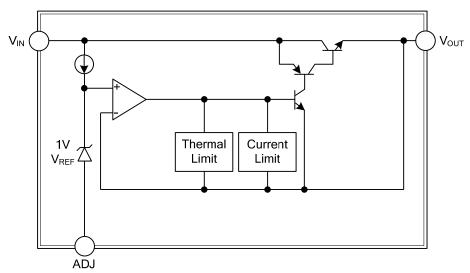

- \* Fast transient response
- \* Low dropout voltage at up to 3A
- \* Trimmed current limit
- \* On-chip thermal limiting
- \* Ultra low current consumption (0.35mA typ.)
- \* Ultra low Adjustment Current (7µA typ.)
- \* Ultra low minimum Load (0.3mA typ.)
- \* Stable with low ESR ceramic output capacitor (MLCC)

#### RDERING INFORMATION

| Ordering Number   |                   | Doolsono | Pin Assignment |   |   | Doolsins  |  |
|-------------------|-------------------|----------|----------------|---|---|-----------|--|
| Lead Free         | Halogen Free      | Package  | 1              | 2 | 3 | Packing   |  |
| UZ2085AL-xx-TN3-T | UZ2085AG-xx-TN3-T | TO-252   | A/G            | 0 | I | Tube      |  |
| UZ2085AL-xx-TN3-R | UZ2085AG-xx-TN3-R | TO-252   | A/G            | 0 | I | Tape Reel |  |

Note: 1. xx: Output Voltage, refer to Marking Information.

2. A: ADJ (for adjustable regulator), G: GND (for fixed regulator), O: V<sub>OUT</sub>, I: V<sub>IN</sub>




www.unisonic.com.tw 1 of 5 QW-R101-045. a

# MARKING INFORMATION

| PACKAGE | VOLTAGE CODE | MARKING                                    |                        |                                              |
|---------|--------------|--------------------------------------------|------------------------|----------------------------------------------|
| TO-252  | AD:ADJ       | Lot Code <b>←</b><br>Voltage Code <b>←</b> | UTC UZ2085A  XX  1 2 3 | L: Lead Free  → G: Halogen Free  → Date Code |

# **■ BLOCK DIAGRAM**



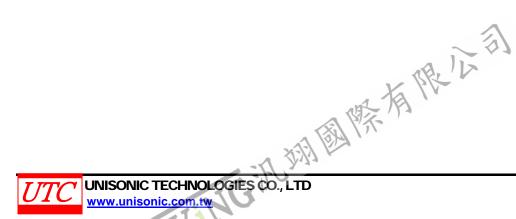
For Adjustable Voltage

## ■ ABSOLUTE MAXIMUM RATINGS

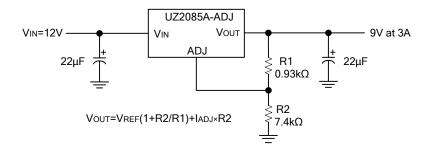
| PARAMETER             | SYMBOL           | RATINGS            | UNIT |
|-----------------------|------------------|--------------------|------|
| Input Voltage         | $V_{IN}$         | 18                 | V    |
| Power Dissipation     | $P_{D}$          | Internally Limited | W    |
| Junction Temperature  | $T_J$            | +150               | °C   |
| Operating Temperature | $T_OPR$          | -20 ~ +85          | °C   |
| Storage Temperature   | T <sub>STG</sub> | -40 ~ +150         | °C   |

Note:1 Absolute maximum ratings are those values beyond which the device could be permanently damaged.

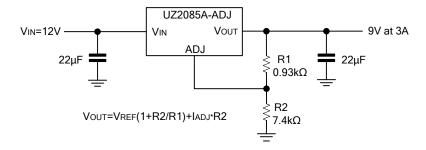
Absolute maximum ratings are stress ratings only and functional device operation is not implied.


## ■ THERMAL DATA

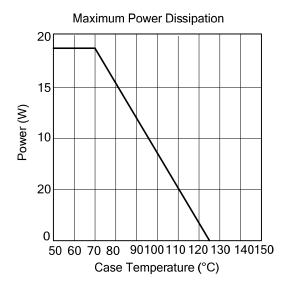
| PARAMETER           | SYMBOL        | RATINGS | UNIT |
|---------------------|---------------|---------|------|
| Junction to Ambient | $\theta_{JA}$ | 118     | °C/W |
| Junction to Case    | $\theta_{JC}$ | 12      | °C/W |


# ■ **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub>=25°C, C<sub>OUT</sub>=22µF, unless otherwise specified.)

For UZ2085A-ADJ (Adjustable Voltage)


| PARAMETER                            | SYMBOL              | TEST CONDITIONS                                                               | MIN. | TYP.  | MAX. | UNIT |
|--------------------------------------|---------------------|-------------------------------------------------------------------------------|------|-------|------|------|
| Reference Voltage                    | $V_{REF}$           | 1.5V≤(V <sub>IN</sub> - V <sub>OUT</sub> ) ≤8.25V, 10mA≤I <sub>OUT</sub> ≤3A  | 0.98 | 1.0   | 1.02 | V    |
| Line Regulation                      | $\Delta V_{OUT}$    | (V <sub>OUT</sub> +1.5V)≤ V <sub>IN</sub> ≤12V, I <sub>OUT</sub> =10mA        |      | 0.005 | 0.2  | %    |
| Load Regulation                      | $\Delta V_{OUT}$    | $(V_{IN}-V_{OUT})=3V$ , $10mA \le I_{OUT} \le 3A$                             |      | 0.05  | 0.5  | %    |
| Dropout Voltage                      | $V_D$               | $\Delta V_{REF}$ %=1%, $I_{OUT}$ =3A                                          |      | 1.2   | 1.40 | V    |
| Current Limit                        | I <sub>LIMIT</sub>  | $(V_{IN}-V_{OUT})=2V$                                                         | 3.1  | 5.8   |      | Α    |
| Adjust Pin Current                   | $I_{ADJ}$           |                                                                               |      | 7     | 10   | μΑ   |
| Adjust Pin Current Change            | $\Delta I_{ADJ}$    | $(V_{OUT} + 1.5V) \le V_{IN} \le 12V$ , $10mA \le I_{OUT} \le 3A$             |      | 0.3   | 2    | μΑ   |
| Minimum Load Current                 | I <sub>O(MIN)</sub> | $(V_{OUT} + 1.5V) \le V_{IN} \le 12V$                                         |      | 0.3   | 1    | mA   |
| Ripple Rejection                     | RR                  | f=120Hz,Tantalum,(V <sub>IN</sub> -V <sub>OUT</sub> )=3V I <sub>OUT</sub> =3A |      | 45    |      | dB   |
| Thermal Regulation                   |                     | T <sub>A</sub> =25°C,30ms pulse                                               |      | 0.004 | 0.02 | %/W  |
| Temperature Stability                | $\Delta V_{OUT}$    |                                                                               |      | 0.5   |      | %    |
| Long-Term Stability                  | $\Delta V_{OUT}$    | T <sub>A</sub> =125°C, 1000hr                                                 |      | 0.03  | 1.0  | %    |
| Output Noise(% of V <sub>OUT</sub> ) | e <sub>N</sub>      | T <sub>A</sub> =25°C,10Hz ≤ f ≤10kHz                                          |      | 0.003 |      | %    |
| Thermal Shutdown                     |                     |                                                                               |      | 150   |      | °C   |




# **■ TYPICAL APPLICATION CIRCUIT**



The UTC UZ2085A also supports MLCC.



## **■ TYPICAL CHARACTERISTICS**



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.